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Abstract

Planetary exploration can benefit by the presence of
multiple robots, which must be able to coordinate their
paths and avoid collisions. This work proposes the use of
a wireless network for the high-level path planning of mul-
tiple planetary rovers. In this setup, robots receive com-
mands from the network nodes so as to maneuver between
locations. Thus, robots can focus on tasks such as local
obstacle avoidance and localization. This is desirable in
space applications where robots are resource-constrained.
Towards this objective, this paper presents a distributed
path planning algorithm that is executed on the network
nodes and provides collision-free paths for the robots on a
precomputed roadmap. The method also aims to minimize
the occurence of deadlocks and the time it takes for each
robot to reach its goal. The approach follows a distributed
constraint optimization formulation that lends itself to a
decentralized, message-passing solution that is appropri-
ate for network-guided navigation. Simulations are em-
ployed to evaluate the method’s scalability and computa-
tional cost, as well as the quality of the resulting paths.

1 Introduction

Using multiple surface robots can be advantageous in
the colonization of planetary bodies [1]. These advantages
range from reducing the weight and size of each robot to
increasing robustness by providing redundancy. Multiple
lighter robots can potentially be transported to a plane-
tary body over many launches, where each launch is less
expensive due to the smaller cargo. A high level of redun-
dancy is also important to ensure that a mission is at least
partly successful. Multi-robot teams also allow for adapt-
ability in mission objectives and even self-repair. They
can be used for the mining of moons and asteroids, the
construction of human habitats, the detection of valuable
resources and astronaut support during manned missions.
Because of these advantages, various efforts in multi-robot
colonies have been considered in the past [2, 3] and ESA
has included multi-robot teams in their vision [4].

When multiple robots, however, operate in the same
environment, it becomes necessary to coordinate their
paths. This paper proposes the use of a static wireless net-

Figure 1. A snapshot of multiple simulated
robots guided by a network. Each node
has a different color and the part of the
roadmap under its control is denoted
with the same color.

works for the computation of the high-level path planning
of the robots. In this setup, the robots receive motion com-
mands from the nodes to follow and in this way focus on
other tasks, such as local obstacle avoidance and localiza-
tion. This is beneficial in space exploration where robots
are multi-tasking, resource constrained and have a limited
time to compute a path. The network can store a roadmap
of high-quality paths between regular destinations of the
robots; paths that will be safe or more efficient, and can
be reused into the future. For example, one requirement
might be that paths have to pass through regions that re-
ceive sunlight so as not to drain the batteries of the robots.
Then the network can compute good quality paths along
the roadmap because it can have access to the position of
the robots through distributed communication protocols.

A network could be already deployed in a planetary
body for other uses, such as collecting seismological or
meteorological data. There have already been works that
study the feasibility and potential applications of wireless
and sensor networks in space exploration [5, 6, 7, 8]. The
challenge that this paper focuses on is the problem of us-
ing a network infrastructure to compute the paths of robots
along a precomputed roadmap so as to avoid collisions,
minimize the occurrence of deadlocks and the duration of
paths.
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1.1 Background

Multi-robot path planning can be approached with
coupled algorithms, which plan for a single, composite
system, and are complete. Nevertheless, they have expo-
nential dependency on the number of robots. This led to
coupled methods that reduce the size of the search space
[9, 10, 11]. A coupled solution, however, is not realistic
for network-guided navigation because it requires the col-
lection of global information from all the network nodes.
The focus here is to identify appropriate distributed algo-
rithms, where each sensor has access only to local infor-
mation (i.e., information within its 1-hop neighborhood)
and does not flood the network with messages.

In decoupled approaches, path coordination can be
achieved through a velocity tuning procedure that avoids
collisions at path intersections [12, 13]. Alternatively,pri-
oritized schemes compute paths sequentially for different
robots in order of priority. High-priority paths are con-
sidered moving obstacles that must be avoided by lower
priority ones [14]. While decoupled planners can solve
problems orders of magnitude faster than coupled ones,
they are inherently incomplete [15]. There have been tech-
niques which aim to increase the reliability of decoupled
planners by searching the space of prioritizations [16]. Al-
ternatively, incremental planning [17] and schemes that
employ coordination graphs [18, 19] have been used to
ensure collision avoidance and deadlock reduction. For
network-guided multi-robot path planning, it is necessary
to consider sophisticated decoupled schemes, where co-
ordination arises naturally from the constraints imposed
on the robots, provides collision avoidance and minimizes
the occurrence of deadlocks.

Network-guided navigationhas been studied in the lit-
erature as a way to guide robots without a map or a need
for robot localization [20]. The focus is often on the dis-
tributed computation of paths over a sensor network for
an individual agent [21] by encoding dangerous regions
as obstacles and often employing potential functions for
navigation [22, 23]. Because flooding the network with
messages is an issue, existing techniques try to minimize
this effect by computing approximate shortest paths over
a skeleton graph of the network [24].

This paper follows adistributed constraint optimiza-
tion (DCO) formulation of network-guided navigation. One
approach forDCO views it as optimal action selection in
a multi-agent factored Markov Decision Processes [25].
This gives rise to algorithms for joint action selection
based on linear programming [25] or asynchronous be-
lief propagation [26]. Alternatively, ADOPT-based algo-
rithms [27] provide a memory-bounded, asynchronous,
localized way to search through task assignments with
built-in termination. DCO problems can be also ap-
proached with auctions, which have been applied to multi-
robot routing problems [28] and space applications [29].

1.2 Contribution

The approach in this paper is an online, distributed
solution for network-guided multi-robot navigation with-
out priorities, where the nodes have only local informa-
tion. The nodes first compute multiple local paths for
robots in their vicinity. Then neighboring nodes coordi-
nate the assignment of paths to robots so that there is no
collision and the robots progress towards their goals. This
is achieved by formulating aDCO problem, where an opti-
mization function is defined. This function depends upon
unary payoffs, which represent individual path quality,
and pairwise payoffs, which express interactions between
robots’ path. An anytime message-passing optimization
protocol [26] is used to compute a good assignment given
the available amount of time.

Simulated experiments confirm that the proposed ap-
proach avoids collisions for benchmarks where the cou-
pled solution is computationally infeasible and the prior-
itized alternative quickly results in deadlocks. Passive or
active deadlocks are rarely observed in the experiments
for tens of robots operating in the same environment. Sim-
ulations are used to study the scalability, path quality and
computational efficiency of the approach.

Most of the existing network-based navigation tech-
niques [20, 21, 22, 23, 24] do not reason about interac-
tions between multiple agents as this work does. Simi-
larly, work on multi-robot path planning [9, 10, 11, 15, 16,
17, 18, 19] does not consider the constraints imposed by
computing paths on a network. Moreover, the formulation
in this paper falls between the extremes of coupled and de-
coupled approaches and only weakly constraints a robot’s
motion before considering interactions, which can be ad-
vantageous in providing a robust decoupled solution. At
the same time, it lends itself to a message-passing protocol
which is appropriate for a network-based solution. This
work studies only an abstract version of the challenge,
where the robots are moving on a roadmap, and does not
incorporate various parameters, such as robot dynamics,
bandwidth and throughput limitation and localization er-
rors. This abstraction, however, allows to focus on the
algorithmic and path planning aspects of the problem.

2 Problem Definition

Assume that static wireless nodesN = {n1, . . . ,n|N|}
are dispersed on the surface of a planetary body. The
nodes can communicate among themselves as long as they
are within a communication radius. The placement of
nodes is random but they are able to form one connected
network. A set of robotsA = {α1, . . . , α|A|} is also present
on the surface. The robots must navigate between various
predefined destinations in the world. A roadmap of safe
pathsG(V,E) for the robots is downloaded to the network
nodes (an example is shown in Figure 1). This roadmap



Figure 2. An illustration on a grid-like
world. Noden j has access only to its
subgraphG(n j). The highlighted areas
correspond toLNGn j .

connects all the destinations of interests. It has vertices
that are collision-free positions and edges that correspond
to collision-free paths. The vertex occupied by robotαi

at time t will be denoted asvi(t). Two robots cannot oc-
cupy simultaneously the same vertex or the same edge.
Each robot has a goal vertexgi ∈ V, which the robot
aims to reach. The robots are able to communicate with at
least one node from each vertex of the roadmap. Informa-
tion regarding the roadmap is distributed over the sensor
nodes. Each noden j can detect the current location of
robots (i.e., vertex on the roadmap) only if the robots are
within radius.

In this setup, a robot does not compute its own path
but receives commands from the nodes in order to reach
its goal. A pathπi for robotαi is a sequence of vertices:
πi(0 : tm) = (vi(t0), . . . , vi(tm)). Given the pathπi(0 : tm),
denote asei(t j) the edge that robotαi has to traverse in
order to go from vertexvi(t j) to vertexvi(t j+1). Two paths
for two robotsαi andα j arecompatible: πi(0 : tm) ≍ π j(0 :
tm), as long as:

∀ 0 ≤ t ≤ tm : vi(t) , v j(t) ∧
∀ 0 ≤ t ≤ tm − 1 : ei(t) , ej(t)

If one of the paths is of shorter duration than the other,
then it can be expanded by repeating its last vertex. A
solution pathπi(0 : tm) for αi is one wherevi(tm) = gi .

Then the problem of network-guided multi-robot path
planning studied in this paper is the following:
Given the properties of sensor nodesN and robots
A as described above, an initial placement of robots
{v1(0), . . . v|A|} and a set of goals{g1, . . . ,g|A|} on the
roadmap G(V,E), compute over the network and move the
robots along paths{π1(0 : tm), . . . , π|A|(0 : tm)} so that:
• Each path is a solution path for the corresponding
robot.
• Each pair of paths is compatible:

∀ i, j ∈ [0, |A|], i , j : πi(0 : tm) ≍ π j(0 : tm)

• And tm is minimized.

3 Message-Passing Protocol

While there is at least one sensor with which an agent
can communicate from every roadmap vertex or edge,
many parts of the roadmap will be covered by multiple
nodes. In order to identify the node that will be respon-
sible for computing and communicating paths to each in-
dividual agent, the roadmap is partitioned into subgraphs
G(n j) for each noden j . During a preprocessing phase,
each roadmap vertex is assigned either to the closest node
or the one with the highest perceived signal strength. The
union of all these subgraphs is the original roadmap, while
their pairwise intersection is empty. This roadmap parti-
tion is available to the sensors before the online operation
of the algorithm. It is similarly possible to partition the
agents at each time step into subsetsA(n j)(t) based on the
vertex they occupy:αi ∈ A(n j)(t) iff vi(t) ∈ G(n j).

3.1 Communication between Nodes and Agents

If a robot’s goal is in a different subgraph than its ini-
tial location, then it must be guided by different nodes.
Since nodes have often only local information, they can-
not compute a complete path to the goal. Furthermore, as
multiple robots enter and exit a node’s local view, previ-
ously computed paths become invalid and they have to be
recomputed. This suggests a replanning, partial solution,
where nodes compute paths for robots at periodical inter-
vals, preferably within the time it takes an robot to traverse
an edge. One such interval will be referred to here as a cy-
cle. During cycle (t − 1 : t), nodes compute paths that
the robots are going to execute during cycle (t : t + 1).
Figure 3 explains the communication loop between robots
and nodes during a cycle:
• A noden j identifies robotsA(n j) in G(n j) (receives id,
coordinates and goal coordinates).
• The nodes enter into a coordination procedure to com-
pute compatible, solution paths for the robots. The coor-
dination must be completed within the cycle’s duration.
• Upon completion, eachn j transmits toA(n j)(t) motion
commands for the next cycle.

3.2 DCO Coordination Graph Formulation

Given the robotsA = {α1, . . . , α|A|} at states
{v1, . . . , v|A|}, the objective is to select an optimal joint as-
signment of paths{π1, . . . , π|A|} that maximizes a global
utility function Q decomposed into local utility functions:

Q(A) =
∑

i

Qi(V(A),Π(A))

Qi expresses the individual utility ofαi and potentially
depends upon theαi ’s interactions with all other robots.
Often, however, a robot depends on a smaller subset of
the team. An approach that exploits such dependencies
involves a coordination graphCG(VC,EC). In CG a node



Figure 3. Communication between n j ,
robots inA(n j) and neighborsN(n j).

represents a robot and an edge (i, j) represents thatαi and
α j are interacting. Then the global utility function can be
decomposed as follows:

Q(A) =
∑

∀i∈[0,|A|]
fi(πi) +

∑

(i, j)∈EC

fi j (πi , π j) (1)

where fi is a unary payoff vector based on the pathsαi has
available andfi j is a pairwise payoffmatrix that expresses
the interactions between the paths ofαi andα j .

To define the coordination graph at each cycle, it
is necessary to respect the communication and informa-
tion constraints imposed by the network. While node
n j has information only regarding its communication ra-
dius, there are also interactions between robots within
n j ’s local subgraph and outside it. But noden j is con-
strained to exchange messages only with neighboring
nodes on the communication graph, which are denoted
asN(n j). Thus, during each cycle, it considers infor-
mation regarding robots only in its Local Neighborhood
GraphLNG(n j), the union ofG(n j) and its neighbors’
subgraphs:

LNG(n j) = G(n j) ∪ (
⋃

∀n∈N(n j )

G(n))

The above requirements define the structure of the coor-
dination graph:“two robots share an edge in CG only if
they are both located within anLNG(n j) for a node nj” .
This implies that neighboring nodes must exchange infor-
mation regarding the robots within their subgraphs at each
cycle. Overall, a noden j implements the following proce-
dure:
1. Exchange “ids, current locations, and goals” with
N(nh) for all robots inLNG(n j).

2. Generate a set of candidate pathsπi ,∀ αi ∈ A(n j).
3. Exchangeπi ’s with N(nh) for all robots inLNG(n j).
4. Participate in the distributed optimization ofQ
5. Exchange withN(nh) the pathsp∗i assigned by the op-
timization to robots within theLNG(n j).

6. Check if thep∗i lead to collision. If they do, enforce
collision avoidance in the transmitted paths toA(n j).

The following discussion provides details on the path gen-
eration step, howQ can be optimized and collision avoid-
ance guarantees.

3.3 Generating Candidate Paths for the Robots

Since each sensorn j has data only for theLNG(n j),
the paths for a robotαi ∈ A(n j) must be also limited
within the subgraphLNG(n j). Thus, during each plan-
ning cycle, the possible destinations forαi can be:
• all the leaves of the subgraphLNG(n j)
• and the robot’s goalgi , if gi is contained inLNG(n j).
The algorithm computes only the shortest path to each
destination along the roadmap. Additionally, it is often
necessary for robots to stop so as to let counterparts move
in vertices ahead of them. This leads to the introduction
of the “zero” path, according to which the robot does not
move from its current position indefinitely. The “zero”
path is undesirable but should be included so as to pro-
vide alternatives to other robots.

3.4 Message-Passing Protocol for Optimization

Theunary payoff function fi(πi) stores the utilities of
paths for robotαi as follows:
• For a path to goalgi : C − dt, whereC is an estimate of
the maximum path length in the roadmap anddt is the
path’s length. The shorter the path, the higher the utility.
• Paths to a leaf vertexvlea f of theLNG(n j): C − (dt +
||vlea f ,gi ||), where||vlea f ,gi || is the length of the shortest
path betweenvlea f andgi .
• The “zero” path gets a utility of 0.
A small noise value is added to all payoffs to avoid the
creation of multiple local maxima inQ. Moreover, all
paths that cause a robot to backtrack are penalized.

The pairwise payoff function fi j (πi , π j) expresses the
pair-wise interactions between paths of different robots.
For a pairπi(dti) andπ j(dt j) there are three outcomes:
• If compatible (πi(dti) ≍ π j(dt j), i.e., not colliding), the
utility is the sum of the unary payoffs forπi andπ j .
• If the paths collide during the next cycle, the utility is a
highly negative constant.
• It the paths collide int cycles (t > 1), then the sum of
the unary payoffs is divided by a function inversely pro-
portional tot [max(e,e10−t)]. Thus, imminent collisions
reduce more the payoff than distant collisions.

Once the unary and payoff functions are computed,
then all the necessary information is available to the nodes
in order to optimize the global utility function. This can be
achieved by a protocol that is analogous to the belief prop-
agation algorithm in Bayesian networks, and which oper-
ates by iteratively sending messagesµi j (π j) for neighbor-
ing robotsi and j in CG. Each sensorn j produces for each
robotαi ∈ A(n j) and for all its neighborsα j ∈ LNG(n j)
the messageµi j (π j):

maxπi { fi(πi) + fi j (πi , π j) +
∑

αk∈LNG(n j )/ j

µki(π(αi))},

which is an approximation of the maximum payoff thatαi

can achieve for pathπ j of robotα j , and is computed by



maximizing (over the paths ofαi) the sum of the payoff
functionsfi and fi j and all incoming messages toαi except
that fromα j . If αi andα j are both inA(n j), then the sensor
does not have to communicate the message to any other
node and instead can internally update the message.

The sensors exchange messages until they converge.
If CG happens to be a tree, then convergence to a fixed
point is guaranteed in a finite number of steps. In graphs
with cycles, there are no guarantees that the algorithm
converges. In practice, however, it has been shown that
the algorithm operates effectively even in graphs with cy-
cles [26]. Here, it is sufficient if every sensor has an inter-
nal clock that marks the exhaustion of the available time
for optimization at which point the sensor selects the best
path at that iteration of the algorithm for each robot:π∗i =
argmax(gi(πi)), wheregi(πi) = fi(αi) +

∑
αk∈LNG(nj )

µik(πi).

3.5 Guaranteeing Collision Avoidance

Since convergence is not guaranteed, it is possible that
the final assignment{π∗1, . . . , π∗|A|} contains incompatible
paths. To detect an incompatibility, neighboring nodes
exchange the resulting pathsπ∗i . A robot involved in an
incompatibility can be required to stop in order to avoid
collisions. But this might result in a chain reaction, where
a sequence of robots have to stop one after the other po-
tentially across over the entire roadmap and flooding mes-
sages have to be exchanged.

If forcing a robot to stop is guaranteed to raise no ad-
ditional conflicts, then this chaining effect can be avoided.
To provide this guarantee, it has to be that during path
generation the current position of every robot is consid-
ered as an obstacle by any other robot for the next cycle,
i.e., if robotαi occupies vertexvi and robotα j occupies
the neighboring vertexv j , then no path in the setπ j is al-
lowed to have as its first vertex, vertexvi . Then, each robot
αi can safely be stopped upon the detection of an incom-
patibility without its guiding sensor having to inform any
neighbor.

The disadvantage of the solution is that it often causes
robots to unnecessarily stop. The way to mitigate this ef-
fect is the following. A noden j identifies robotsαi where
their first step is to stop and the second step is to move to a
vertex where another robotα j is currently located. If robot
α j actually moves away from vertexv j , thenαi does not
have to stop and can accelerate the execution of its path by
moving directly tov j . What might happen is that multiple
robots might be in the same situation asαi , waiting forα j

to move out from vertexv j . In this case a priority has to be
used to decide which robot getsv j . This improvement can
also have a chaining effect if multiple robots are in con-
secutive vertices. The associated implementation in this
paper ignores this chaining effects, as this operation is in-
troduced only for efficiency and is not needed for collision
avoidance.

Figure 4. The second simulated roadmap.
The simulation shows a 21 sensor net-
work with 50 cooperating rovers.

4 Experiments

To show the feasibility of the proposed approach, a
series of simulated experiments is conducted to evaluate
different parameters, such as solution quality, computa-
tional efficiency, and scalability. Thesetup for these ex-
periments involved the following parameters:
• Hardware: Parallel computing cluster made of Sun Fire
X4100 M2 Nodes. Each node has two quad-core 2.6
GHz CPUs and 8GB of RAM.
• Software: The simulation is implemented using C++
for the sensor network and vehicle processes. All in-
terprocess communication utilizes the Message Passing
Interface standard (MPI), which guarantees lossless and
in-order delivery of messages. Results are visualized in
3D, ensuring proper behavior of the sensors and rovers
in the environment.
• Each node in the sensor network is simulated with its
own process space and dedicated processing core in the
parallel cluster. Because of the relatively low computa-
tional overhead for vehicles, all vehicles are simulated
using a single process and core in the cluster.

Two different roadmaps on the same crater-like en-
vironment, shown in Figures 1 and 4, were utilized as
benchmarks for the technique.
i) Sparser roadmap (Figure 1)
• 178 vertices and 183 undirected edges

ii) Denser roadmap (Figure 4)
• 228 vertices and 239 undirected edges

All simulationsutilize a sensor network that provides
coverage of all roadmap vertices. Each subgraphG(n j) is
computed as the set of vertices that are closest in terms
of Euclidean distance to the noden j . For each of the
roadmaps, a set of entry and exit vertices is defined for
all rovers. In order to make the problem more challeng-
ing, constraints are placed on the selection of these points
so that vehicle interactions are likely to occur during the
simulation. The start and goal positions for each rover is



selected at random along the boundary of the roadmap.
This ensures that rover interactions are almost impossible
to avoid and require some level of coordination. When a
rover enters the environment, the simulation must ensure
that its start vertex is unoccupied at entry time. If the start
vertex for a rover is occupied when it is to enter, a queue is
formed for that vertex. As more vehicles attempt to enter
the environment at the same position, they will also enter
the queue. Vehicles are released from the queue as soon
as the entry vertex becomes free.

The objective of the experiments was to evaluate the
technique in terms of the followingmetrics:

1. Path quality:Evaluated through:
• the steps each rover takes to reach its destination
(compared against the length of the shortest path if in-
teractions with other vehicles are ignored, which is a
highly optimistic estimate),
• the stops in an rover’s path,
• the times a rover is instructed to backtrack,
• the times the optimization procedure results in a colli-
sion and collision avoidance has to be enforced,
• the times the set of rovers reached a deadlock (all
rovers stop moving).

2. Computational Efficiency: The duration of a planning
cycle can impact the quality of the results and is an im-
portant parameter of the evaluation procedure.

3. Scalability: The number of sensors and vehicles in an
experiment affect the algorithm’s performance. The ob-
jective is to scale these numbers while minimizing the
degradation in path quality or computational efficiency.

Intuitively, the number of stops in a rover’s path is
proportional to the number of other rovers operating in
the environment and affectspath quality . As the number
of rovers increases, the likelihood that a rover will have to
stop repeatedly when navigating to the goal also increases.
Similarly, the number of backtracks performed by a rover
is likely to increase, but this can be offset by penalizing re-
versing paths. In the more dense roadmap with a 28 sensor
configuration and 25 robots, each robot stops for just a sin-
gle time step during the entire path, and on average 1/3 of
them perform a single backtrack. The same scenario with
100 vehicles sees a large jump in the average number of
stops, to about 54 per vehicle. This indicates that the av-
erage rover is stopped for 54 time steps during navigation
to allow other rovers to pass. Backtracks, however, do not
increase by the same amount because of the backtracking
penalty. Only 60% of rovers perform a single backtrack
on average.

The jump in the number of stops has an effect on the
total number of steps traveled when compared to the op-
timal single rover path. This ratio goes from about 1.4 in
the 25 vehicle case to 3.2 in the 100 vehicle case. Dead-
locks were not seen until the 75 rover scenarios in both
roadmaps, and the deadlocks were in the smaller sen-

Rovers
Sensors

14 21 28
25 0 0 0
50 0 0 0
75 100 2 0
100 100 100 58

Table 1. The percentage of deadlocks on
the dense roadmap with varying num-
bers of rovers and sensors.

sor network configurations. All three sensor configura-
tions tested saw deadlocks with the 100 rover scenarios,
with the 28 sensor configuration computing solutions in
about 40% of experiments. Table 1 shows the percent-
age of deadlocks in varying experimental configurations.
Finally, a high volume of rovers causes the network to
intervene more in cases where the message passing pro-
tocol has not converged on a collision free set of con-
trols. The 25 rover, 28 sensor case sees less than 1% of
time steps needing extra intervention to avoid collisions
between rovers. This percentage increases to about 20%
in the 100 rover case.

Because the technique is to be used in an online fash-
ion, it is important that iscomputationally efficient and
each planning step take a relatively small amount of time.
This, however, can limit the quality of the paths between
vehicles because the message passing protocol may not
converge. The coordination portion of the approach is
capped at 100 iterations of the message passing protocol,
or 500ms, whichever comes first. These values work well
in practice for situations involving up to 50 vehicles. As
the number of rovers increases, it may become necessary
to allow more time to the message passing protocol to al-
low a better solution to converge at runtime. In simulation,
allowing more time for situations with many rovers de-
creases the deadlock rate and improves the solution qual-
ity. Table 2 shows a 75 vehicle scenario with two different
message passing time values.

Different numbers of rovers and wireless sensors were
tested using both the sparse and dense roadmaps to eva-
lute scalability. Intuitively, scenarios involving a smaller
number of rovers fared better than the more constrained
simulations with more rovers. Simulations with a scat-
tered sensor network with as few as 14 nodes success-
fully and consistently coordinated teams of up to 50 rovers
through the environment. Increasing the number of sen-
sors allows for more rovers to simultaneously operate in
the same environment. With 21 sensor nodes, the actions
of 75 rovers are easily coordinated in both roadmaps, and
28 nodes can find solutions for 100 rovers. Figure 5 shows
the average total solution length computed for different
numbers of sensors and rovers in the sparser roadmap.
Similar values are computed for the more dense roadmap.



Time
21 Sensors Collision Path
75 Rovers interventions ratio

500ms
Sparse 21.16 2.40
Dense 20.4 1.90

1500ms
Sparse 19.5 2.28
Dense 18.2 1.88

Table 2. Experimental values showing the
solution quality and the average num-
ber of collision intervention steps for
different message passing times in both
roadmaps.

Figure 5. The average solution length (time
steps) for varying numbers of vehicles
and sensors in both roadmaps. Path co-
ordination was limited to 500ms per so-
lution step.

As the number of vehicles increases, the total solution
length for each roadmap scales linearly. Experiments in
both of the roadmaps stress the number of vehicles that
the environment can support at any one time. For the 100
robot case, there were cases that 98 robots were moving
simultaneously on the roadmap, which corresponds to a
50% occupancy of the underlying graph.

The number of sensors in the environment not only
plays an important role in the number of rovers that can
be successfully coordinated, but also the solution qual-
ity. The number and length of candidate paths generated
for each rover is dependent on the sensor node’s cover-
age area. In a uniformly distributed sensor network, too
few sensors will result in large coverage areas and may
introduce dependencies between rovers that are very far
apart, resulting in less time for coordinating rovers that
are closer together. For the dense roadmap and 14 nodes
a high amount of deadlocks in scenarios involving 50 or
more vehicles was observed because of the large amount
of candidate paths generated for each rover. In the sparser
roadmap, however, the 14 node network fared well for 50
robots. Too many sensors can also reduce the quality of
paths. With many wireless sensors covering the environ-
ment, the coverage areas become very small, resulting in a
small number of short candidate paths for each rover. Fur-

thermore, dependencies between rovers are not introduced
until they are very close, which can result in sub-optimal
choices in path coordination or even deadlock situations.
This can be seen by comparing the results for the same
number of rovers with an increasing number of sensors.

5 Discussion

This paper proposes the use of a wireless network
to guide multiple rovers that can potentially be used in
space applications. An abstract version of the problem
was studied, where robots move along a precomputed
roadmap. This work proposed a distributed algorithm
for this problem, where each node of the network has
information about robots only in a local neighborhood
and exchanges information only with 1-hop neighboring
nodes. The algorithm casts the challenge as a distributed
constraint optimization (DCO), models the interactions of
agents through a coordination graph and applies a mes-
sage passing protocol for the solution of theDCO prob-
lem. While it follows a decoupled approach for multi-
robot path planning and given only local information on
the network nodes, simulated experiments showed that
deadlocks occur rarely on benchmarks where simple pri-
oritized schemes failed very quickly.

There are many directions for further investigation
of the idea of network-guided navigation for planetary
rovers. (i) In particular, it is interesting to study how to
construct and provide the roadmap to the nodes, which
will be used in order to guide the robots. (ii) Moreover,
instead of planning on a graph, it is possible to consider
continuous space planning, or even taking dynamic mo-
tion constraints into account. Similarly communication
constraints, such as bandwidth and throughput, or lcoation
uncertainty can be included in the problem formulation.
(iii) If all the agents are gathered in a small part of the
workspace, then the corresponding nodes have a higher
load. Load balancing schemes where heavy-loaded nodes
outsource computation to less loaded neighbors can be
helpful. Such load-balancing can also be achieved through
the path planning process itself, where the nodes directing
robots to different regions of the workspace so as to avoid
congestion. (iv) Similarly, what should be the network’s
behavior if there are gaps in the coverage of the workspace
or how should the network adapt when a node fails.
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