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Network-Guided Multi-Robot Path Planning in Discrete Represenations

Ryan Luna and Kostas E. Bekris

Abstract— This work deals with problems where multiple 3 LNGL(ni) [
robots move on a roadmap guided by wireless nodes that form L
a communication network. The nodes compute paths for the g
robots within their communication range given information &
about robots only in their vicinity and communicating only with au G(nj)
neighbors. The objective is to compute paths that are collision- om" —&
free, minimize the occurrence of deadlocks, as well as the L “’}'
time it takes to reach the robots’ goals. This paper formulates [ [ 5 [
this challenge as a distributed constraint optimization problem. [ 5|
This formulation lends itself to a message-passing solution that A ) o |
guarantees collision-avoidance despite only local knowledge of || [ il
the world by the network nodes. Simulations on benchmarks [ [ [
that cannot be solved with coupled or simple decoupled schemes [ [T T [ [
are used to evaluate parameters and study the scalability, path
quality and computational overhead of the approach.

Fig. 1. Network-guided multi-robot path planning on a grapigents
are squares. Network node’ can directly observe agents within its local
subgraphG(n7). Through communication with neighborg’/ can also
l. INTRODUCTION access information regarding its Local Neighborhood Gréapig (n?).

This paper discusses an interesting variant of path e a form ofdecoupled planningelevant in discrete rep-

ordmathn problems, yvhere a static wwel_ess networ_k 'Pesentations. They compute paths sequentially for diftere
responsible for the high-level path planning of multiple bots in order of priority [6]. While prioritized schemes

. i Ty
robpts (see Flgure 4). In this setup, the robots can .d'VeE%n solve problems faster than coupled alternatives, they a
their computation to tasks such as local obstacle avmdanc;1

therently i lete [7]. Thus, there h techrsi
and localization. This is beneficial in cases where robats alr hiirhegir):]l?(f?;?:eeasee[ tale rel:;btilifyrei)f Z\é?:obuepelg d epﬁanmr?eures
resource constrained and have a limited time to compu gl [9, [10], [11]

a path, such as planetary exploration [1] or warehou eNetwork—guided navigatiohas been used to guide robots
management [2]. Moreover, the network may compute bett%

alitv paths for the robots because it has access © ma ithout the need for a map or localization [12]. The focus is
quaity p : . use | o ) Sften on the distributed computation of paths over a network
information, as in the scenario of Figure 2(a). Similartgtie

d ften take advant f wired icati be' encoding dangerous regions as obstacles and employing
nodes can often take advantage ol wired communication %otential functions [13]. Flooding the network with messag

cozg:ni;uor:i, ;Vhl'lgpli IS molrde l;eha:ﬁle comp?r:e? ttor erelssrls problematic and techniques try to minimize this effect by
communication. s cod € e case uture cy ecomputing approximate shortest paths over a skeleton graph
physical systems for transportation, which can employ 8 the network [14]

networked infrastructure to guide automobiles in an urban '

environment to control traffic. B. Challenges in Distributing Multi-Robot Path Planners

Distributing the operation of coupled planners over a
_ _ _ _ sensor network is not realistic, because they require the
Multi-robot path planningcan be solved either with a collection of global information from all the network nodes
coupled approach, where the robots are viewed as a singyreover, Table | shows the time it takes for a coupled,
high degrees-of-freedom (DOF) system, or through a decop*.pased planner to solve the grid-based problem of Figure
pled approach, where paths are computed individually fof(h). The time becomes quickly prohibitive even for just
robots and then conflicts are resolved. The coupled approaghagems, (more than 4 hours). While existing work has
is complete if combined with a complete planner but haghown how to optimally decouple multi-robot problems into
exponential dependency on the number of robots. This hggquential plans of smaller composite robots [5], the bl
led to methodologies that reduce the size of the search spagerigure 2(b) cannot be decoupled to smaller problems. In
while offering completeness [3], [4], [5]. Prioritized sahes  the scenarios studied in this work, it is very often the case
This work is supported by NSF CNS 0932423 and a graduateniship that within the vicinity of a sensor node there are more than 6
to Mr. Ryan Luna by the Nevada NASA Space Grant Consortium. Th@gents whose paths cannot b.e decoupled. Alternative abuple
computational experiments were executed on equipment obtavith  planners work only on certain types of graphs [4]. Thus,
internal funds of the University of Nevada, Reno. o this paper focuses on decoupled solutions. Nevertheless,
The authors are with the Computer Science and Engineeringrbeent imol ioritized sch t uti ith R
at the University of Nevada, Reno, NV, USAl(una@se. unr . edu, simp e_ prion 'Z_e schemes are not a ?0 _u_ 1on el er' gu_r
bekri s@se. unr. edu). 2(c) gives a simple case where a prioritized solution will

A. Background



ey P [I. PROBLEM DEFINITION

I o) Consider a grapld/(V, E) embedded in the obstacle-free
| | & part of a workspaceR. In this paperR C R2, but the
e |, treatment extends to higher-dimensional probledshas
) ﬂi b 2 Lo vertices that are collision-free positions® and edges that
s @ correspond to collision-free paths between vertices. &her
are also agents! = {ay, ..., a4}, Which occupy vertices

Fig. 2. (a) The paths of; anda; towardsg; andg, intersect. Nodes;  of the roadmap and move along the roadmap’s edges. The
andn; can detect this earlier than the agents. (b) The environmleeteithe

coupled planner was tested. The proposed technique cam thidvproblem vertex OCCQP'eq by agent; at timet will t?e denoted as
many orders of magnitude faster. (c) A prioritized techniqoesidering  v;(¢). The time it takes to traverse edges is the same along
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only optimal paths for agents would fail in this case. the graph. Two agents cannot occupy the same vertex or the
Number of Agents| 2 5 T = 5 same edge_ S|mult§meo_usly. Each agent has1 aggcalﬂj\//.‘
Time (5) 0.00 | 0.21 | 307.557 | 1010.04 | 150856 R contains static wireless node¥ = {n',...,n""}.

The nodes can communicate among themselves and with the
agents as long as they are within a predefined radius. The
nodes are placed in such a way so that they form a connected
fail. Thus, it is necessary to consider more sophisticategetwork. Moreover, an agent can communicate with at least
decoupled planners, where coordination arises natura@iy f one node from every vertex af. Nodes are aware of the
the constraints imposed on the robots, provides collisiograph’s structure but can detect only the location of agents
avoidance and minimizes the occurrence of deadlocks.  within their communication radius. Agents are also reférre
here as robots, while nodes are also called sensors.

An agent does not compute its own path but receives

The proposed approach is an online, distributed solutiog, a0 s from the nodes in order to reach its goal. A path
for network-guided, multi-robot path planning where no priﬂ_ for agenta; is a sequence of vertices; (0 : t,,) =

orities are used and the sensors have only local informatiog%,(to) vi(tn)). Given a path, the edgei(t;) is the
sy Ya\tbm/) ) ’ 7

The sensors first compute aIternaUve Iopal paths fpr robo ge that has to be traversed in order to go frait;) to
in their vicinity and then coordinate to find an assignment

of paths to robots. This is achieved through a Distributeéll((%f;)';— \/xvoﬂp?(')[hstfo)r t\g: ligr]lzn;s;.andaj arecompatible
Constraint Optimization CO) formulation. Coordination ~ " =™ IR '
Graphs [15], [16], [10], [11] have been used to describe VO<t<tny:v(t)#vit)A
the interaction of agents iDCO, which lead to message- VO <t <ty —1:e(t)#e;(t)
passing solutions with asynchronous belief propagatié, [1
[17]. This paper follows this formulation but there are alsdf one path is shorter than the other, then it can be expanded
alternative schemes fobPCO, such as ADOPT [18], [19] by repeating its last vertex. &olution pathm;(0 : ¢,,) for
and action-based solutions [20]. The technique also pesvidc; iS one wherey;(t,,) = g;.
collision avoidance guarantees. Experimental resultirmon ~ Problem:Given the above described nod&Sand agents
that the proposed approach achieves collision-free multid, an initial placement of agentgv,(0),...,v4} and
robot path planning for instances where the coupled saiutiqgoals {gi, ..., g4} on the graphG(V, E), compute over
is infeasible and the prioritized schemes quickly result ithe network pathgm; (0 : ¢,,), ..., 7.4 (0 : t,,)} so that
deadlocks. e Each path is a solution path for the corresponding agent.

To the best of the author’s knowledge, the paper’s probleme Each pair of paths is compatible:
has not been studied in the past. Network-based navigation mi(0: ) < m(0:ty), Vi, j€[0,]A]], 1 # j.
[12], [13], [14] focuses on a single agent and does not cone Andt,, is minimized.
sider future interactions of multiple agents. Similarlyylii
robot path planning does not consider the network-related .
constraints [3], [4], [5], [7], [8], [9]. In contrast to pridized The approach first partitions the graph into subgraphs
scheme, th®CO formulation allows the assignment of pathsG(n’) for each noden/ during an offline phase. A point
to robots that are locally suboptimal but which allow thealong G is assigned to subgrapt¥(n/) as long asn’
global existence of a solution to other robots. The algorith is its closest sensor according to Euclidean distance. This
also lends itself to a message-passing protocol, which isadmap partition is available to the sensors before theenl
appropriate for a network-based problem. operation of the algorithm. It is similarly possible to pton

This work studies an abstract version of the problem othe agents at each time step into subséts’)(¢) based on
a discrete representation, without parameters such ag rotioe vertex they occupyy; € A(n’)(t) iff v;(t) € G(n?).
dynamics, bandwidth limitations and localization errdrsis During the online operation and as multiple agents enter
abstraction allows this paper to focus on path planning, tand exit a node's subgrap&(n’), previously computed
compare against optimal single-agent paths and formuiate tpaths become invalid and they have to be recomputed. This
requirements for collision avoidance. suggests a replanning, partial solution, where nodes cteampu

TABLE |
COMPUTATION TIME FOR A COUPLED SOLUTION

C. Proposed Approach and Contribution

HIGH-LEVEL DESCRIPTION OFTHE APPROACH



Agentin depends only on a small subset @f An approach that
R exploits such dependencies involves a coordination graph

ID

Ping | |Location Exccite CG(VY,E). In CG a vertex represents an agent and an
edge(i, j) represents the fact that andc; are interacting.
Compute Compute Check for ; - .
paths payoffs collisions sensorn’. Then the global utility function can be decomposed as
Exchange o ok | |Excrange follows:
info paths payoff
Ne) QA= Y film)+ > fiylm,m) (D)
vi€[0,]Al] (i,5)€EC

Fig. 3. The communication between sensér agents ind(n’) and neigh- ~ where f; is a unary payoff vector based for the pathshas

boring sensorsV'(n?). The sensors first exchange information regardin ; s I ;
the agents in their local neighborhood graphs. Then they atenpaths for %vailable andf” is a pairwise payoff matrix that expresses

these agents and exchange them. For every two paths of diffagents, the the interactions between the pathscofand ;.
sensors compute the pairwise payoff expressing whethemth@aths will To define the coordination graph at each cycle, this

lead to collisions or not. Once payoffs have been computedsehsors enter - a5hr05ch takes into account the communication and infor-
an asynchronous and distributed optimization protocol toeresignments

of paths to agents that minimize conflicts. There is a final ctiacthe ~Mation constraints imposed by the network. While has
algorithm that guarantees the avoidance of collisions. information regarding only its communication radius, er

ths f s at iodical int | ithin the i .are also interactions between agents in different subgraph
paihs for agents at periodical intervais, within the time ip, agents that are far away one from the other have limited
takes agents to traverse an edge. One such interval will

: fiteraction. Moreover, each sensor should communicate onl
referred to here as a cycle. During cyc@b&e— 1:¢), nodes with neighboring sensors, denoted A§(n’). Thus, two
con;putg pathls t?:f.it the 3agen';s_are hgomg to eleecute dur'ggents share an edge (G only if they are both located
cycle (¢ - ¢+ 1). Figure 3 explains the protocol for agent-;, neighboring subgraphs. This gives rise to the definitibn o

sensor communication during a cycle: ; j .
e Nodes ping agents within their communication range. the Local Neighborhood GrapA\'G(?) of a sensor node:
e Agents respond with their ids, coordinates and goals. LNG(n/) = G(n?) U ( U G(n))
¢ Nodes coordinate to assign paths. VneN (nd)

e Eachn’ transmits taA(n’) the action for the next cycle.

For the coordination step the sensors are limited to exahan ) .
messages only with their neighboring nodes. Each sen bgraphs, and is the subset of the original graph that each

ni generates a set of candidate paths for all the agerﬁgnsor node has access to. This means that neighboring

A(n?) in its subgraph and exchanges such information witRENsors must exchange information regarding the agents

its neighbors. The proposed approach views these candidéﬁ'@hin their subgraphs. Given the above definitions, a senso

paths as discrete action sets in a Distributed Constraifit |mplements‘fhe following pro'cedure: y A
Optimization PCO) problem, so as to optimize a global 1. Exchange |qls, current locations, and goals Wiy
objective function. The global objective function is detine _[or all agents inCN'G(n/). .

in such a way so that when optimized, the agents do nof- Generate the set of candidate paﬁhﬁ o € A(n)..
collide and follow short paths towards their goal. Given the 3- Exchange the pathsi(s) with N(n") for all agents in
available amount of time, the sensors select the actiorighat ENg(,n],)' . o L

returned as the best by the optimization protocol. The senso 4. Participate in the distributed optimization Qf

. ) neatv
implement a final check to guarantee that no collisions arise: EXchange withN(n") the pathsp; assigned by the

from the current path assignment and then they communicatePlimization to agents within th€ NG ().

the resulting action to the agents. 6. C_h(_eck if p_athsgo;k I_ead to_ collision. If they_do, enforce
collision avoidance in the final paths transmitted4(/).

hich corresponds to the union ¢f(n’) and neighboring

IV. IMPLEMENTATION SPECIFICS

B.
This section details how the sensors compute the candidate

paths for the robots, the formulation of tBe€Oprotocol and N Order to construct a complete set of paths for
how to guarantee collision avoidance each agent, it would be necessary during each cycle to

compute all the paths from its current location to its goal by
A. DCO Coordination Graph Formulation applying the Dual Dijkstra algorithm [21]. Unfortunatetiajs
Given the agentsA = {ai,...,q4} at states is prohibitively expensive even for relatively small graph
{v1,...,v.4/}, the objective is to select an optimal joint Thus, the proposed approach selects a set of plans that
assignment of pathér, ..., 4} that maximizes a global locally provide a variety of choices for each agent. These

utility function  decomposed into local utility functions: Plans are computed by running the A* algorithm and they
correspond to the shortest path to the goal via all the leaves

Q(A) =D Qi(V(A),TI(A)) of the subgraphCN'G(n?). If the goal g; is contained in

@ LNG(n?), then the shortest path tp is also added to this

Q; expresses the individual utility af; and depends upon set. Otherwise the shortest pathgtagoes through one of the
«;’s interactions with other agents. Often, however, an agetaaves of the subgrapN'G(n’/) and is already inr;. The

Generating Candidate Paths for the Robots



“zero” path, which corresponds to the agent remaining in the
same position indefinitely, is also added to the set. Whilg
undesirable, this path should be included so as to providi
alternatives to other agents.

C. Message-Passing Protocol for Optimization

The unary payoff functionf;(r;) stores the utilities of

) Fig. 4. (left) The coordination grap@G that corresponds to the problem
paths for agenty;. The shorter the path to the goal, theof Figure 1. Agentsig, ag anda; belong to the subgraph of node but

higher its utility. For exa_mple, th_e utility can be C(_)mpu’azd they may also interact with other agents in the Local Neighbod Graph
follows: C'—dt, whereC is an estimate of the maximum pathof n’. (a4, ag, a2) (right) Consider this roadmap whetg, ax,, am, an, ap

; ; ) « ” are agents. If both agents; and o, decide to move to node;, there will
length inR anddt is the path's length. The “zero” path, as ar]be a collision. The node guiding; can decide to keep the agent in its

_Un.deswable SO!Utiony gets a payoff Of. 0.Asis typica_‘”y €on cyrrent location. But then this will effect the current ot®s of o, o
in implementations of belief propagation, a small noiseigal and .

is added to all payoffs to avoid the creation of multiple loca o ) )
maxima inQ. Furthermore, to avoid paths that are forcinggeme for optimization at which point the sensor selects the
the agent to backtrack along its current path, the payoffs @St path:ry = argmax(gi(ﬂi)); whereg;(m;) = fi(os) +
all such paths are further penalized. Experiments show thEakewg(n,-) pir(mi). The functiong, (7;) can be computed
this penalization is beneficial to the algorithm’s perfonoa.  internally without communication.
The pairwise payoff functionf;;(m;, ;) expresses the _ o )
pair-wise interactions between the paths of different tggen D- Guaranteeing Collision Avoidance
For a pair of paths;(dt;) andr;(dt;) there are two cases: The final path assignmettrf, ..., 77, } may still contain
e If the paths are compatible;(dt;) < =;(dt;) (i.e., not incompatible paths, since the message-passing protosot is
colliding), the utility is the sum of the unary payoffs.  guaranteed convergence. To detect such an issue, neighbori
e If the paths collide during the next cycle, the utility isnodes must exchange the selected paths To resolve
the maximum negative number. incompatibilities, it might appear that forcing one, or, alf
Given the above payoff functions, every path assignment the agents involved in the event to stop is sufficient but this
robots that contains even one imminent collision corredponis not true. If an agent; stops, then another agem, one
to global objective functior) getting the maximum nega- not involved in the incompatibility, may have been assigned
tive value. The assignment where all agents do not mowh action that takes it through. Therefore, ifo; has to stop,
corresponds t@) = 0. If at least one agent moves towardsthen o, must also stop and this can have a chain reaction
the goal, then the objective function will be positive. Theover all the agents and throughout the network. This means
optimization of@ will promote the selection of short paths. that a sensor which detects an incompatibility has to inform
The optimization of the global objective function canits neighbors which can lead to a flooding of the network.
be achieved by a protocol that is analogous to the belief Thus, collision avoidance has to be guaranteed through
propagation algorithm in Bayesian networks, and whichocal decisions and without any need for communication.
operates by iteratively sending messages(w;), between This can be achieved, as long as forcing an agent to stop
neighboring agentsandj in CG. Each senson’ produces is guaranteed to raise no conflicts. This means that other
the following messages: For all agents € A(n’) and for agents should not plan through the current position of an
all neighboring agents;; of «; in the LN'G(n?), it has to  agent. In particular, if agent; occupies vertex; and agent
compute the message; (m;): ay, occupies neighboring vertex,, then no path in the set
7, 1S allowed to have as its first vertex. Now, each agent
mazr{ fi(mi) + fij(mi m5) + Z _ P (m (i) } «; can safely be stopped without its guiding sensorghaving
ak€LNG()/ ] to inform any neighbor. If the best path of, goes through
The messagg;;(7;) is an anytime estimate of the maximumu;, then a stop action should be added in the beginning of
payoff thata, can achieve for pathr; of agente;. It is this plan.
computed by maximizing (over all paths aof) the sum of This solution, however, will often cause agents to stop.
fi and f;; and all messages fat; except that fromn;. If  To reduce this undesirable effect the following steps can be
a; anda; are both inA(n?), then the sensor can internally executed. Node/ identifies agents:;, where their first step
update this message without communication. is to stop and the second step is to move to a vertex where
The sensors exchange messages until they converge.aifother agenty; is currently located. Such paths can arise
the coordination graphC'G happens to be a tree, thenfrom the introduction of the safety rule described above. If
convergence to a fixed point is guaranteed in a finite numbagenta; actually departs vertex;, thency, does not have to
of steps. In graphs with cycles, there are no guarantees tisabp and can accelerate the execution of its path by moving
the algorithm converges. In practice, however, it has bedatfirectly to v;. However, multiple agents might be in the
shown that the algorithm operates effectively even in gsaptsame situation asy, waiting for «;; to move out ofv;. In
with cycles [16]. Here, it is sufficient if every sensor haghis case a priority has to be used to decide which agent
an internal clock that marks the exhaustion of the availablgetsv;. This improvement can also have a chaining effect if




multiple agents are in consecutive vertices. The assatiate
implementation in this paper ignores this chaining effast,
this is introduced only for efficiency and is not needed for
collision avoidance.

V. EXPERIMENTS

To show the feasibility of network-guided multi-robot path
planning, a series of experiments is conducted to evaluate
different parameters for the approach, solution qualibyne
putational efficiency, and scalability.

Fig. 5. (a) The sparse, urban roadmap with a graphical remegsen of
A. Setu the coverage of a 16 sensor configuration. (b) The spars@manodadmap
’ P with a graphical representation of the coverage of a 36 sexsdiguration.

e Hardware: Parallel computing cluster made of Sun Fire

X4100 M2 Nodes. Each node has two quad-core 2.6 GHz

CPUs and 8GB of RAM. When a robot enters the environment, it must ensure that
e Software: The simulation is implemented using C++its start vertex is unoccupied at entry time. If the starteser
for the sensor network and robot processes. All inteffor a robot is occupied when a robot is to enter, a queue
process communication utilizes the Message Passing lis-formed for that vertex. As more robots attempt to enter
terface standard (MPI), which guarantees lossless and itle environment at the same point, they will enter the same
order delivery of messages. Results are simulated usingjeeue. Robots are released from this queue as soon as the
Java based visualization to ensure the proper behavior @fitry point becomes free.

sensors and robots in the environment. . )

e Each node in the sensor network is simulated with it§- Evaluation of Parameters and Important Metrics

own process space and dedicated processing core in tHe Path quality: This metric evaluates the quality of paths
parallel cluster. Because of the relatively low computa- computed through the following parameters:

tional overhead for robots, all robots are simulated using e the steps each agent takes to reach its destination

a single process and core in the cluster. e the stops in an agent's path
_ - e the number of times an agent backtracks
B. Implementation Specifics e the number of times the optimization procedure results

To evaluate the approach, a series of experiments was in a collision and collision avoidance has to be enforced
performed using three different environments, shown in e the number of times the set of robots reached a

Figures 1 and 5. deadlock (all robots stop moving)

i) Sparse, Urban Roadmap (Figure 5(a)) During each experiment the simulation reports the average
e 111 vertices and 113 directed edges value for the above parameters, as well as its standard

i) Dense grid roadmap (Figure 1(a)) deviation. One comparison point for the number of steps
e 329 vertices and 1026 undirected edges each robot takes to its goal is the ratio of the length of

iii) Sparse, random roadmap (Figure 5(b)) the path taken versus the length of the shortest path if
e 217 vertices and 442 undirected edges interactions with other robots are ignored. The duration

All simulations utilize an equally spaced static sensor of the single-robot shortest path is a highly optimistic
network that results in uniform coverage of the space. The estimate, with ratios near 1.0 yielding a very optimal
subgraphG'(n’) of each sensor node’ is computed as the  solution.
set of vertices that are closest in terms of Euclidean distan 2. Computational EfficiencyThe duration of a planning
to the node. For each of the three roadmaps, a set of entrycycle can impact the quality of the results and is an
and exit vertices is defined for all agents. In order to make important parameter of the evaluation procedure.
the problem more challenging, constraints are placed on th&. Scalability: The number of sensors and robots in
selection of these points so that robot interactions aeyik an experiment effect the algorithm's performance.
to occur during the simulation. In the sparse urban roadmap The objective is to be able to scale these numbers
and the dense grid roadmap, start vertices are chosen alongvhile minimizing the degradation in path quality or
the boundary of the roadmap. The exit vertex for each robot computational efficiency.
is chosen so that it lies along a different bounding edge of
the roadmap than the start vertex. For the sparse randd®analizing backtracking paths: One possible way to
roadmap, there are 12 predefined vertices for robot entimprove path quality is to penalize paths that move the
and exit; 6 on the west side and 6 on the east side. Eaobbots along the previously traveled edge. By penalizing
robot is assigned one start vertex, with its correspondinfpese backtracking paths, robots will be discouraged from
goal vertex lying on the opposite side of the environmenteversing direction which can significantly improve the
With these conflicting start and goal assignments, robots haquality of the solution. On the other hand, selecting such
to coordinate their paths, otherwise deadlocks will occupaths may be necessary in order to avoid collisions or



Penalty | No Penalty 300
Random Roadmap Solution Steps| 211.02 | 228.3
36 Sensors Path Ratio 2.52 3.16
100 Robots Deadlocks 2 30 s
Dense Grid Solution Steps| 78.79 | 83.6 E
25 Sensors Path Ratio 1.24 1.32 3 s @ 28 Sonears
75 Robots Deadlocks 2 10 £ W 49 Sensom
TABLE II ’

THE EXPERIMENTAL VALUES SHOWING THE IMPROVEMENTS WHEN
PENALIZING BACKTRACKING PATHS. ALL VALUES ARE AVERAGED OVER
50 SIMULATIONS.

25 Vehicles 50 Vehicles 75 Vehicles 100 Vehicles

_ ) _ Fig. 6. The average solution length for varying numbers ofotskand
deadlocks. Therefore, the question arises whether theibeneensors in the random, sparse roadmap.

from such a penalty is higher than any potential drawback.
Experiments are conducted in the two roadmaps that allow 110
backtracking. If a candidate path is computed that reverses
the direction of the robot, the unary payoff corresponding
to that path is divided by 2. The experimental results,
shown in Table II, show that penalizing backtracking paths
significantly improves the overall quality of the solution.

The total number of steps for the solution, the ratio of
the path’s length to the optimal value, and the number of .
deadlocks is significantly reduced.
[4]
25 50 75 100

Computational Efficiency: Because this technique is to be
used in an online fashion, it is important that each planning
step take a relatively small amount of time. This, however, o _ _
can limit the quality o the coordinated paths between rsbof®% . Fah ausiy i the dense g1d roadmap it 2 sndueaverage
because the message passing protocol may not converg&opots.
The coordination portion of the approach is capped at 100
iterations of the message passing protocol, or 500ms in tiemoving towards it from the opposite direction, easing the
sparse roadmaps and 1500ms in the dense environmetanstraints between any two robots. Experiments with up to
whichever comes first. More time is allotted for the dens@50 robots moving through this roadmap were consistently
roadmap because a much larger number of candidate paguscessful without any deadlocks.
are generated for each robot during each time step. TheseFrom Figures 6, 7, and 8, it can be seen that as the number
deadlines prove very effective in the three roadmaps. Thsf robots increases, the total solution length for each megul
sparse urban roadmap has an average cycle duration of Ogafdles linearly. Experiments in each of the three roadmaps
seconds in the 25 sensor, 250 robot case. The dense gsitess the total number of robots that the environment can
environment has an average planning time of 2.07 secongspport at any one time. These limits appear implicitly with
in the 25 sensor, 100 robot case. Lastly, the sparse randehe robot queues at the predefined entry points of each
roadmap has an average planning time of 0.75 secondsrisadmap. In the sparse urban roadmap, the number of robots
the 36 sensor, 100 robot case. These three configurations gapsent inside of the roadmap peaks at 65. This equates
be seen in the video submitted in conjunction with this workio nearly 60% of the vertices of the roadmap occupied.
For the dense roadmap, the number of robots peaks at 62
Scalability: Fig. 6 shows the performance of the techniquén the graph of 329 vertices. Although this roadmap has
in terms of total time steps for the random sparse roadmapearly three times the number of vertices as the sparse urban
The best solutions appear from a 36 sensor configuratioffadmap, the robots reach their goal positions much quicker
For network configurations of 25, 36, 49, and 64 sensor#) the dense grid because of the large number of candidate
the technique is able to solve scenarios involving up to 7Baths available to each robot. The sparse random roadmap
robots with no reported deadlocks. It isn’t until the 100abb is the most constrained roadmap of the three tested, and is
scenarios when deadlocks appear for this roadmap. Similalso the largest in terms of area. In this roadmap, solutions
results appear in the dense grid roadmap. For a netwodke consistently computed with up to 100 robots present in
configuration of 25 sensors, the 25 and 50 robot simulatiorie roadmap, which equates to about 50% occupancy of the
do very well, with deadlocks beginning to appear in the 75nderlying graph.
and 100 robot cases. The sparse urban roadmap proved to b&he number of sensors in each environment plays an
the easiest of the three scenarios. The environment allows important role in the solution quality for each roadmap. The
backtracking because the edges are all directed. Becausenafmber and length of the candidate paths generated by each
this, a robot never encounters a scenario where anothetr robobot is dependent on the size of each sensor node’s coverage

W Average Path Length
Total Simulation Length

Solution Length
o
a

)
N
3

Vehicles



heavy-loaded nodes outsource computation to less loaded
neighbors can be helpful. Nodes could also direct robots to
different regions of the workspace so as to avoid congestion
(4) It is interesting to investigate the case where certain v
hicles do not cooperate, but can be detected by the network,
as well as the case of malicious agents. (5) What happens
when there are gaps in the coverage of the workspace or how
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50
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100 150 200 250 [2]
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Fig. 8. The average solution length for varying numbers ofoteland
sensors in the random roadmap. [4]

area. If there are very few sensors in an environment, the ar%]
covered by each node will be large, resulting in many long
candidate paths for each robot. This introduces coordinati
between robots that may otherwise be unaffected by thél
action of the other because of their large distance fromy,
each other. The opposite situation can also be detrimental.
In an environment that is over saturated with sensors, th?g]
coverage area for each node becomes small, resulting in a
small number of short candidate paths for each robot. The
small number of paths, coupled with the fact that robots will[gl
not coordinate until they are in very close proximity to each
other can lead to sub optimal choices in path coordination.
Figure 6 shows that network configurations with small oF]
large numbers of sensors result in worse solutions for the
same roadmap. [11]

VI. DISCUSSION

This paper introduces the problem of multi-robot patﬂlz]
planning through a set of network nodes that guide agents
moving on a graph. This work proposes a distributed, onling3]
algorithm for this problem, where each node of the network
has information about robots only in a local neighborhoogh;
and exchanges information only with 1-hop neighboring
nodes. The algorithm casts the challenge as a Distribut
Constraint Optimization problem, models the interactiohs
agents through a coordination graph, and applies a message
passing protocol for its solution. The method guaranteéfﬁl
collision avoidance without causing the network to floodhwit
messages. Simulated experiments showed that deadlo¢kd
occur rarely on benchmarks where prioritized schemesdfaile
very quickly and the coupled approach is infeasible. [18]

There are many exciting extensions for this line of work:
(1) Integrating the proposed algorithm with coupled plasne ;o
so as to guarantee deadlocks avoidance, while keeping the
computational cost as low as possible. (2) Extending thig0l
work to continuous space planning and considering dynamic
motion constraints. Similarly communication constraintsj21]
such as bandwidth and throughput, or location uncertainty
can also be introduced. (3) Load balancing schemes where

should the network adapt when a node fails.

REFERENCES

C. R. Weisbin, P. S. Schenker, R. Easter, and G. Rodritfeebotic
space colonies,” isth Inter. Symp. on Atrtificial Intelligence, Robotics
and Automation in Space (ISAIRAS-OWontreal, Canada, 2001.

P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hueds of
cooperative autonomous vehicles in warehouskkMagazine 2008.
C. Clark, S. Rock, and J.-C. Latombe, “Motion planning foultiple
robot systems using dynamic networks,”fmoc. IEEE Int. Conf. on
Rob. and Autom. (ICRAR0O3, pp. 4222-4227.

M. Peasgood, C. Clark, and J. McPhee, “A complete and Blala
strategy for coordinating multiple robots within roadmapHEE
Transactions on Roboticsol. 24, no. 2, pp. 282-292, 2008.

J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Calited
path planning for multiple robots: Optimal decoupling int@gential
plans,” in Robotics: Science and Systems2@09.

M. Erdmann and T. Lozano-Perez, “On multiple moving objédts
IEEE ICRA 1986, pp. 1419-1424.

G. Sanchez and J.-C. Latombe, “Using a prm planner to coenpar
centralized and decoupled planning for multi-robot systemslEEE
Int. Conf. Robotics and Automation (ICRA002, pp. 2112-2119.
M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optiing
solvable priority schemes for decoupled path planning fame of
mobile robots,”"Robotics and Autonomous Systerd. 41, no. 2, pp.
89-99, 2002.

M. Saha and P. Isto, “Multi-robot motion planning by inorental
coordination,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IRQ8P06, pp. 5960-5963.

Y. Li, K. Gupta, and S. Payandeh, “Moation planning of nipik agents
in virtual environments using coordination graphs,1lHEE Int. Conf.
Robotics and Automation (ICRA005, pp. 378-383.

K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decealized planner
that guarantees the safety of communicating vehicles with ®mp
dynamics that replan online,” ifEEE/RSJ International Conference
on Intelligent Robots and Systems (IRO&)07, pp. 3784-3790.

M. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robaungation
using a sensor network,” iEEE International Conference on Robotics
and Automation (ICRA)2004, pp. 636—642.

P. Corke, R. Peterson, and D. Rus, “Localization andigsion
assisted by cooperating networked sensors and robotsrh. Journal
of Robotics Research (IJRR)ol. 24, no. 9, pp. 771-786, 2005.

C. Buragohain, D. Agrawal, and S. Suri, “Distributedvigation
algorithms for sensor networks,” itEEE Int. Conf. on Computer
Communications (INFOCOMApril 2006, pp. 1-10.

] C. E. Guestrin, D. Koller, and R. Parr, “Multiagent pfang with

factored mdps,” irProc. 14th Neural Information Processing Systems
(NIPS-14) 2001, pp. 1523-1530.

N. Vlassis, R. Elhorst, and J. Kok, “Anytime algorithms faultiagent
decision making using coordination graphs,"lEEE Transactions on
systems, Man and Cybernetiche Hague, Netherlands, 2004.

J. Kok and N. Vlassis, “Collaborative multiagent reirdement learn-
ing by payoff propagation.Journal of Machine Learning Reseatch
vol. 7, pp. 1789-1828, 2006.

P. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt: Asynchoais
distributed costraint optimization with quality guararggeArtificial
Intelligence vol. 161, no. 1-2, pp. 149-180, 2005.

] W. Yeoh, F. A., and S. Koenig, “BnB-ADOPT: an asynchraso

branch-and-bound DCOP algorithm.” RAMAS 2008, pp. 591-598.
M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, SeKig,
A. Kleywegt, C. Tovey, M. A., and S. Jain, “Auction-based riwuitbot
routing,” in Robotics: Science and System&005, pp. 343-350.

Y. Fujita, Y. Nakamura, and Z. Shiller, “Dual dijkstra aeh for
paths with different topologies,” ilEEE Int. Conf. on Robotics and
Automation, (ICRA)vol. 3, 2003, pp. 3359-3364.



