
Push and Swap:
Fast Cooperative Path-Finding with Completeness Guarantees

Ryan Luna and Kostas E. Bekris ∗

University of Nevada, Reno
{rluna, bekris}@cse.unr.edu

Abstract
Cooperative path-finding can be abstracted as com-
puting non-colliding paths for multiple agents be-
tween their start and goal locations on a graph.
This paper proposes a fast algorithm that can pro-
vide completeness guarantees for a general class
of problems without any assumptions about the
graph’s topology. Specifically, the approach can
address any solvable instance where there are at
mostn-2 agents in a graph of sizen. The algorithm
employs two primitives: a “push” operation where
agents move towards their goals up to the point that
no progress can be made, and a “swap” operation
that allows two agents to swap positions without
altering the configuration of other agents. Simu-
lated experiments are provided on hard instances
of cooperative path-finding, including comparisons
against alternative methods. The results are favor-
able for the proposed algorithm and show that the
technique scales to problems that require high lev-
els of coordination, involving hundreds of agents.

1 Introduction
Cooperative path-finding requires the computation of paths
for multiple agents on a graph, where the agents must move
from their unique start nodes to their unique targets while
avoiding collisions. This problem is relevant to many applica-
tions, such as warehouse management, intelligent transporta-
tion, mining, space exploration, as well as computer games.

1.1 Background
The problem can be solved with a coupled approach, which
plans for the composite graphGn = G×G×. . .×G, whereG
is the original graph andn is the number of agents, or through
a decoupled approach, where paths are computed individu-
ally and then conflicts are resolved. Integrated with complete
search methods, such as A*, the coupled algorithm achieves
completeness and optimality. Nevertheless, coupled planning
becomes impractical due to the exponential dependency onn
and soon requires far too much time and memory.

∗This work is supported by NSF CNS 0932423. Any opinions,
findings and conclusions expressed in this work are those of the au-
thors and do not necessarily reflect the views of the sponsors.

(a)

1 2
(b)

1

2

(c)

2

1
(d)

2 1

Figure 1: Illustration of the swap primitive. Agents 1 and 2
are to swap positions with one another.

In prioritized schemes, paths are computed sequentially
and high-priority agents are considered moving obstacles
by low-priority ones[Erdmann and Lozano-Perez, 1986].
Searching the space of prioritizations can assist in perfor-
mance[Bennewitzet al., 2002]. Such decoupled planners
tend to prune states in which higher priority agents allow
lower priority agents to progress, which may eliminate the
only viable solutions. Modern decoupled approaches con-
sider dynamic prioritization and windowed search[Silver,
2005], as well as spatial abstraction for improved multi-agent
heuristic computation[Sturtevant and Buro, 2006]. Another
modern search-based technique creates a flow network in a
grid-world to significantly reduce the branching factor and
the amount of replanning[Wang and Botea, 2008].

Certain methods aim to reduce the size of the search space
while maintaining completeness. A hybrid technique plans
for each agent given the future paths of other agents, but em-
ploys a coupled approach for assigning targets and avoiding
deadlocks[Qutubet al., 1997]. An alternative method manu-
ally decomposes a large graph into subgraphs of prespecified
types [Ryan, 2007]. Then it plans between subgraphs be-
fore coordinating motion within each subgraph. For graphs
with specific topologies, efficient strategies to solve multi-
agent path planning problems exist[Peasgoodet al., 2008],
[Surynek, 2009]. For specific domains in grid-worlds, there
is a complete polynomial time algorithm[Wang and Botea,
2009]. A recent sequential approach computes the optimal
decoupling of large-scale problems into fully-coupled sub-
problems[van den Berget al., 2009].

Published in the Proc. of Int’l. Joint Conference on Artificial Intelligence, 2011, pp. 294-300

1.2 Contribution
This paper proposes a new method for cooperative path-
finding that is computationally efficient and complete for a
very general class of problems, i.e., all instances where there
are at mostn− 2 agents in a graph withn vertices.

The proposed method is many orders of magnitude faster
compared against the traditional coupled A* approach, as it
focuses its search into a necessary subset of operations to get
a solution. In comparison to existing alternatives that pro-
vide completeness guarantees for certain problem subclasses,
the proposed method provides similar guarantees for a much
wider problem class. Furthermore, it does not make any as-
sumptions about the topology of the underlying graph, as it
does not require the graph to be a grid, as other methods
do [Wang and Botea, 2008], [Wang and Botea, 2009], or a
tree[Peasgoodet al., 2008]. Compared to a general decou-
pled algorithm devised to solve problems in a computation-
ally efficient manner[Silver, 2005], the proposed solution ex-
hibits competitive solution times while having no dependence
on parameter selection. Most importantly, the proposed ap-
proach solves a much wider set of problems than the incom-
plete, decoupled alternative.

The approach employs two basic primitives. Note that easy
instances, where there is no coupling between agents, can be
solved by each agent moving along its shortest path to its
goal. One of the two primitives of the proposed approach,
called “push”, is similar to this operation. An agent forces
other agents to clear its shortest path to its goal and moves
along this path. Harder problems, however, will require at
least two agents to switch positions. This issue is addressed
by the second primitive of the algorithm called “swap”. Once
an agent cannot make progress towards its goal by pushing,
then it has to swap positions with the agent next to it along the
shortest path. This operation brings the two agents in a part
of the graph where the swap can take place. This may force
other agents in the graph to move in response, potentially all
of them. Eventually, all the agents must be returned to their
original positions, with the two agents swapping positions. If
it is not possible to execute the swap operation for these two
agents, then the problem is not solvable.

Experiments verify the promised advantages by comparing
computation time against an optimized coupled A* alterna-
tive, as well as the fast and general decoupled method for
cooperative path-finding[Silver, 2005]. The comparison in-
cludes small-scale, hard instances of cooperative path finding
where the agents are highly coupled and a significant num-
ber of swaps per agent has to be executed. The decoupled
approach cannot solve many of these problems and the A*
solution is orders of magnitude slower than the proposed al-
gorithm. The experiments also include larger-scale instances
where hundreds of agents are placed randomly. The A* ap-
proach on the composite graph cannot provide solutions for
these problems within a reasonable amount of time. When the
decoupled approach works, it comes up with fast solutions but
it cannot solve all of the problems. The “push-and-swap” al-
gorithm solves all the large-scale problems in a computation-
ally efficient manner. The length of solutions is competitive
to the length of solutions by the decoupled approach[Silver,
2005] but the solution paths lend themselves to smoothing.

2 Setup and Notation
Consider a graphG(V, E) andn agentsR, wheren ≤ |V|−2.
An assignmentA : [1, n]→ V places all the agents in unique
vertices: ∀i, j ∈ [1, n], j 6= i : A[i] ∈ V, A[i] 6= A[j].
The starting assignment will be denoted asS, while the tar-
get assignment will be denoted asT . An actionπ(Aa,Ab)
is a change between two assignmentsAa andAb so that only
one agent moves between neighboring nodes in the two as-
signments, i.e.,∃ i ∈ [1, n] and∀j ∈ [1, n], j 6= i :

Aa[i] 6= Ab[i], (Aa[i],Ab[i]) ∈ E ,Aa[j] = Ab[j].

A pathΠ = {A0, . . . ,Ak} is a sequence of assignments, so
that for any two consecutive assignmentsAi andAi+1 in Π
there is an actionπ(Ai,Ai+1). The objective of cooperative
path-finding is to compute a pathΠ∗ = {S, . . . , T }, which is
a similar sequence initiated withS and finishing withT .

3 Push and Swap
This section proposes a novel, complete algorithm for the co-
operative path-finding problem.

3.1 Algorithm

Algorithm 1 PUSH AND SWAP(G,R,S, T)
1: A ← S
2: Π∗ ← {A}
3: U ← ∅
4: for all r ∈ R do
5: while A[r] 6= T [r] do
6: if PUSH(Π∗,G,A, T , r,U) == FALSE then
7: if SWAP(Π∗,G,A, T , r,U) == FALSE then
8: return ∅ (i.e., Failure)
9: U ← U ∪A[r]

10: return Π∗ (i.e., Success)

Push And Swap: Algorithm 1 provides the high-level op-
eration of the approach. ThePUSH AND SWAP method sets
the current assignmentA to the starting oneS (line 1) and
initiates the solution pathΠ∗ by inserting the starting assign-
ment (line 2). It also initializes the setU of agents that have
already reached their targets to the empty set. Then for each
agentr (line 4), PUSH AND SWAP tries first to pushr to T [r]
by clearing its path from other agents (line 6). If the push op-
eration forr fails, then a swap operation is initiated (line 7).
If the swap also fails, then the problem is not solvable (line
8). If r has not reached its target, then the algorithm keeps
applying push and swap operations onr (line 5). Whenr
reachesT [r], it is inserted to the setU of static agents, whose
position must be respected (line 9). Eventually the algorithm
returns the solution pathΠ∗, which is constructed by the calls
to thePUSHandSWAP algorithms.

Push Operation: The PUSH algorithm first computes the
shortest pathp∗ between the current assignmentA[r] of the
input agentr and the target assignmentT [r] (line 1). The
method will keep iterating as long asr has not moved toT [r]
(line 3) and it can still make progress towardsT [r] without
any need for swapping (lines 12-13). If the graph vertices

g1(a)
1 32

(b)
321

(c)
3

2

1

(d)

2

1 3

Figure 2: Illustration of the push primitive. Agent 1 pushes2
twice in order to reach its target position.

along p∗ are not occupied, thenr is moved along these
vertices and the corresponding intermediate assignments are
stored on the solution path (lines 4-7). At this point, ifr has
already reachedT [r], the subproblem forr is solved (line 8).
Otherwise, the next vertexv along the shortest pathp∗ of r
is occupied by another agent. Then the algorithm considers
whether it is possible to push those agents along the shortest
path p∗ out of the way ofr, without altering the position
of r or any of the agents inU , which have already reached
their targets (lines 9-22).PUSHcomputes the shortest pathp
between the agent occupying vertexv and the closest empty
vertexvempty to v on G, given thatA[r] and all vertices in
U are obstacles (lines 9-11). If no pathp can be found (lines
12-13), then agentr cannot push the agents out of its shortest
path and cannot make progress without swapping. If a path is
found (lines 14-22), then all of the agents along the shortest
path are pushed one vertex forward towardsvempty, clearing
v for r to occupy. Then the algorithm continues the pushing
process given the new assignment of the agents.

Algorithm 2 PUSH(Π∗,G,A, T , r,U)
1: p∗ ← SHORTESTPATH(G,A[r], T [r])
2: v ← first vertex inp∗ afterA[r]
3: while A[r] 6= T [r] do
4: while ∃ v andv is empty onG do
5: A[r] = v
6: Π∗ = Π∗ + {A}
7: v ← next vertex inp∗

8: if A[r] 6= T [r] then
9: MarkA[r] andU as blocked onG

10: vempty ← closest empty vertex tov onG
11: p← SHORTESTPATH(G, v, vempty)
12: if p == ∅ then
13: returnFALSE
14: MarkA[r] andU as free onG
15: v′ ← last vertex onp beforevempty

16: v′′ ← vempty

17: while v′′ 6= v do
18: r′ ← agent for whichA[r′] = v′

19: A[r′] = v′′

20: Π∗ = Π∗ + {A}
21: v′′ = v′

22: v′ → previous vertex alongp
23: returnTRUE

Swap Operation: Overall, SWAP selects the agents adja-
cent to the input agentr alongr’s shortest path toT [r] (lines
1-2), and switches their positions leaving agents already at
their target positions intact. For a vertexv in G with degree
≥ 3, the algorithm computes the shortest path fromA[r] to v
(line 7). The algorithm then attempts to push agentsr ands
to v and one of its neighboring nodes correspondingly (line
9). This is achieved by a call to the functionMULTIPUSH,
which is analogous toPUSH. The difference is that instead
of a single agent,MULTIPUSH moves a set of adjacent agents
simultaneously. Furthermore,MULTIPUSH ignores the setU
and is able to indiscriminately push all agents out of the spec-
ified pathp. If the pushing operation succeeds, thenA[r] is
equal tov andA[s] is adjacent tov. In order forr ands to
swap positions atv, any two adjacent vertices ofv (excluding
the vertex occupied bys) must be evacuated (line 10). This
is the objective of functionCLEAR. If two adjacent vertices
of v cannot be cleared, then it is not possible forr ands to
exchange positions atv, and another vertex is considered.

If the set of all vertices of degree≥ 3 onG is exhausted
andr ands cannot reach a vertexv, thenSWAP returns failure
(line 13). If the swap can take place, the sequence of actions
Π computed inMULTIPUSH andCLEAR is added to the global
solution (line 14), and the swap itself is performed (line 15).
A graphical example of the swap primitive is shown in Fig. 1.

Algorithm 3 SWAP(Π∗,G,A, T , r,U)
1: p∗ ← SHORTESTPATH (G,A[r], T [r])
2: s← agent on first vertex inp∗ afterA[r]
3: success = FALSE
4: swap vertices← {All vertices of degree≥ 3 onG}
5: while swap vertices 6= ∅ and success == FALSE do
6: v = swap vertices.POP()
7: p←SHORTESTPATH(G,A[r], v)
8: Π← ∅
9: if MULTIPUSH (Π,G,A, T , {r, s}, p) == TRUE THEN

10: IF CLEAR(Π,G, v,A[r],A[s]) == TRUE THEN
11: success = TRUE
12: if success == FALSE then
13: return FALSE
14: Π∗ = Π∗ +Π
15: EXECUTE SWAP (Π∗,G,A[r],A[s])
16: Π = Π.REVERSE(), exchanging paths forr ands
17: Π∗ = Π∗ +Π
18: if T [s] ∈ U then
19: return RESOLVE(Π∗,G,A, T , r, s)
20: return TRUE

Once the swap has been executed, the sequence of actions
Π computed during theMULTIPUSH and CLEAR operations
must be reversed so that the agents inU will be able to return
to their targets at the end ofSWAP. Note, that care has to be
taken becauser ands have swapped positions. Therefore, in
order to successfully reverse the sequence of actions, paths
executed byr will now need to be executed in reverse bys,
and vice versa (line 16). The reversed sequence of actions is
then added to the solution pathΠ∗ (line 17).

Finally, it may happen that the agents was in the setU

and was already at its target position (line 18). In this case
the assignment ofs must be adjusted so thatA[s] is equal to
T [s]. This is achieved by functionRESOLVE (line 19). This
step is discussed later in this section.
Clear Operation: CLEAR attempts to free two vertices in the
neighborhood of a vertexv that has degree three or more for
the purposes ofSWAP. For brevity, a detailed algorithm is not
given, but the general procedure is described here.

Assume that two adjacent agents,r ands wish to switch
positions, and currently occupy vertexv and a neighbor ofv.
Two other vertices in the neighborhood ofv must be freed in
order forr ands to swap positions. There are three cases to
consider when evacuating a agenta from the neighborhood
of v, seen in Fig. 3. Case 1 involves simply pushinga to a
neighboring vertexv or one of its neighbors. If case 1 fails
to free two vertices, but there exists one free vertex in the
neighborhood ofv, case 2 can be employed. In case 2,r
is pushed towards to freev temporarily so thata can move
throughv to its unoccupied neighborv′. Oncea is at v′, it
can attempt another push away fromv in an effort to clear the
neighborhood.

Case 3

Case 1

Case 2

Case 2

(unnecessary)

a

rs

Figure 3: The three cases
considered when evacuat-
ing a from the neighbor-
hood ofv (shaded).

Case 3 is an extension of
case 2, where agenta at-
tempts to evacuate the neigh-
borhood ofv through the ver-
tices occupied by agentsr
ands. This case is unneces-
sary to consider when check-
ing if a SWAP is feasible be-
tweenr ands at v because it
requiresa to swap withr and
s. If it is possible to swapa
with r ands at v, then there
must be two other free ver-

tices in the neighborhood ofv, and it isn’t necessary to evac-
uatea. Therefore, fora to swap withr ands, a second swap-
ping vertex,v̇ must be employed. However, if it is possible
for a to swap withr ands at v̇, thenr ands could also swap at
v̇. Similarly, it may be possible fora to swap withr atv, and
then swap withs at v̇. If it is feasible fora ands can swap at
v̇, it is also possible forr ands to swap atv̇. BecauseSWAP
searches all possible vertices of degree 3 or more,v̇ will be
checked, making case 3 unnecessary to consider.
Resolve Operation: WhenRESOLVE is invoked, an agentr
is swapped with an agents, buts was already at its goal (e.g.,
A[s] ∈ U). There are a few cases to consider in order to get
agents back to its target, while allowingr to make progress:
1) UsePUSH to mover further along its path, freeing its cur-
rent vertex, the target ofs. Agents can push to its target.
2) If a PUSH fails for r it needs to be swapped a second time
with the agent blocking its shortest path. If theSWAP suc-
ceeds, then thePUSH from case 1 is repeated. If this fails,r
is swapped again, repeating case 2.

It can happen thatr swaps all the way to its target. In this
case,r has swapped with a targetr′ that was occupying its tar-
get, andr′ must then continue the resolution process in order
to free the goal ofs. If any SWAP from case 2 fails, then the
resolution process is not possible, making the originalSWAP
that invokedRESOLVE invalid.

3.2 Completeness
Theorem 3.1. PUSH AND SWAP is complete for cooperative
path-finding problems where the number of agentsn is less
than or equal to|V| − 2.

The following discussion provides a sketch of the proof due to
space limitations. This sketch brings together three ideasthat
are necessary to provide completeness in this formulation:1)
If SWAP fails, then the problem is not solvable, 2) Once an
agent has reached its target,PUSH and SWAP always ensure
this agent remains there, and 3) If the initial configurationis
solvable, there always exists a path for an agent to reach its
target, regardless of where it is pushed.

Lemma 3.2. A cooperative path-finding problem is solvable
if and only if SWAPcan bring agentsr ands to a vertexv with
a degree≥ 3 along with two empty vertices.

Consider the sequence of vertices along the shortest path
of r to its targetT [r], wheres is positioned betweenr and
T [r]. The ordering ofr ands along this string of vertices has
to be swapped in order for the problem to be solved. Even if
r follows a different path to reach its targetT [r], the ordering
of r ands along the shortest path will change if the problem
is solvable. Thus, the problem is solvable if and only if the
two agents can be swapped.

SWAP exhaustively searches all the vertices of degree 3 or
more, checking whether it is feasible for adjacent agentsr
ands to reach a vertex usingMULTIPUSH, apply CLEAR at
the vertex, and execute a swap.

There are two cases to consider when usingMULTIPUSH
to navigate a composite agentA composed ofr ands to v:
the initial position of theA lies in a cycle of the graph with
v, or no such cycle exists. In the case of the cycle, assum-
ing that at least one vertex in the cycle is free, agentA can
simply traverse the cycle to arrive atv; MULTIPUSH does not
exclude vertices inU . If A does not lie in a cycle withv, then
the feasibility becomes a “packing” problem. If the number
of agents that lie along the shortest path forA to reachv is
less than or equal to the number of reachable free vertices for
those agents, then the “packing” problem will succeed, allow-
ingA to reachv. Reachable, in this instance, is defined as all
vertices that can be occupied without moving through a ver-
tex in the path ofA. If this problem is not solvable, then it is
not possible forA to reachv.

From the construction ofCLEAR, given in the algorithm
description, all relevant possibilities to free the neighborhood
of a vertexv are attempted. Therefore, if the set of vertices
of degree 3 or more, reachable by the composite agentA is
exhausted, andCLEAR fails for each vertex, then it is not pos-
sible to swap the positions of agentsr ands, making the co-
operative path-finding instance unsolvable.

Lemma 3.3. After the application of one iteration ofPUSH
and SWAP primitives, at least one agent has made progress
toward its target, and agents at their targets will remain there.

PUSH, by construction, excludes vertices in the setU when
searching for positions to push agents blocking a particular
path. If a vertex in the path toPUSH along exists inU , the
method returns a failure, indicating aSWAP is necessary.

SWAP does not exclude any vertices inG when attempting
to switch the positions of two adjacent agents. When applying
MULTIPUSH andCLEAR in attempting to bring the two agents
to a vertex where a swap can take place, potentially all other
agents already at their target could be disturbed during this
process. Therefore, all actions executed duringMULTIPUSH
andCLEAR are reversed after the swap is executed (line 16),
bringing all agents that were at their target back to them.

When an agenta makes progress along its path usingPUSH
it isn’t disturbing any other agents already at their targets, and
progress is made in computing the solution. However, ifa is
blocked, thenPUSHmakes no progress in advancinga. Agent
a must swap positions with the blocking agent to continue to-
ward its target. By construction ofSWAP any agents already
at their targets that must be moved to accommodate the swap
will be returned there during the action reversal. At the endof
SWAP, a has swapped positions along its shortest path, mak-
ing progress toward its target.

Lemma 3.4. If the initial agent configuration is solvable, any
configuration reached usingPUSH andSWAP operations will
remain solvable.

An agenta′ may be pushed away from its initial vertex
during the planning of other agents. Because of this displace-
ment, it may seem that there is no path fora′ to travel from
its current vertex to its target. Note, however, that it is pos-
sible fora′ to get from its initial vertex to the current vertex
using a series ofPUSH and SWAP operations, and a similar
set of operations will allowa′ to return to its initial vertex.
In the worst case,a′ will have to return to its initial vertex,
then follow the original path to its target. Lemma 3.3 shows
that an iteration of both thePUSH and SWAP operators will
allow an agent to make progress in a solvable instance. If
the initial configuration is solvable, then it is possible for a′

to reach its target. The solvability of an instance depends
only on the initial configuration, because any configuration
achieved throughPUSH AND SWAP can be reversed.

4 Evaluation
This section evaluates the performance ofPUSH AND SWAP,
and provides a comparison with the coupled A* and the de-
coupled WHCA* algorithm[Silver, 2005] in terms of scal-
ability and robustness. In order to evaluate the proposed
approach, a series of challenging instances of cooperative
pathfinding were created. These problems include a set of
small benchmarks that tend to be difficult for a decoupled
planner, as well as much larger instances in a randomly gen-
erated maze environment. All experiments were performed
on a Core 2 Duo 2.5GHz machine with 4GB of memory.

Benchmark problems: A series of small, benchmark
problems (Fig 4) were created, ranging in size from 3 to 7
agents. Because of the small-scale of these problems, a com-
parison of thePUSH AND SWAP technique with a complete,
coupled A* planner can be shown. Results are also provided
for the decoupled WHCA* approach using a window size of
5. Table 1 shows the time needed for the three approaches to
compute their respective solutions. Note that times of more
than 60 minutes are declared a failure for the coupled A*
approach. If the WHCA* gets stuck to a local minimum,

CoupledA∗ WHCA*(5) Push and Swap
Problem Time Size Time Size Time Size

Tree 2.80 15 0.68 34.4 0.86 39
Corners 3882 36 0.53 36 1.30 60
Tunnel 417 53 ∞ n/a 1.36 145
String 207 20 1.04 36.1 0.77 39

Loop/Chn ∞ n/a ∞ n/a 2.99 523
Connector ∞ n/a ∞ n/a 3.57 108

Table 1: The computation time (ms) and solution length for
the benchmarks.∞ represents a failure to compute a solution.

16

2

3

4

5 6 7 8 9

10

11

12

1314151

Figure 5: Left: The “stacks” benchmark problem with 16
agents. Left: Rotation problem with 16 agents. All agents
must move one vertex counterclockwise in the loop.

this is also reported as a failure. As expected, the coupled
approach is able to compute solutions for the smaller prob-
lems, but quickly grows infeasible as the number of agents ex-
ceeds just a handful. The WHCA* planner is able to quickly
compute solutions for 3 of the 6 benchmarks; the 3 failures
can be attributed to a high degree of coordination needed to
solve those particular problems.PUSH AND SWAP is able
to quickly compute solutions to all six benchmark problems,
supporting the completeness property given in Section 3.

One larger benchmark asks for multiple “stacks” of agents
to reverse their position in each stack. The 16-agents version
of the problem in Fig. 5 (a) is infeasible for the coupled A*
planner. It also proved difficult for the decoupled WHCA*
approach, which was consistently unsuccessful in computing
a solution with various window sizes.PUSH AND SWAP, on
the other hand, computed a solution in just 5.7 mS.

Scalability: As the number of agents increases, the fail-
ure rate of traditional decoupled techniques increases rapidly
because the level of coordination required grows larger.

The first scalability experiment tests an environment with
the agents arranged in a circular pattern, with the interiorof
the environment free. The target for each agent is adjacent to
the initial position, with the final result achieving a rotation
of all agents by one vertex. Figure 5(b) shows an example

WHCA*(5) Push and Swap
Agents Time (ms) Length Time (ms) Length

12 2.13 1.79 1.136 3.00
16 3.10 1.87 1.23 1.12
20 5.06 2.01 2.19 2.50
24 9.59 1.93 2.56 2.08

Table 2: The computation time (milliseconds) and average
individual solution length for the rotation problem.

1

2

3

3

4

1

2
4

3

2

1

3

2

4

1

5

3

1

2

4

6

5

7 2

4

3

1 5

6

Figure 4: The set of benchmark tests. From left: Tree, Corners, Tunnel, String, Loop-Chain, Connector.

Figure 6: A randomly generated environment with 100
agents. Agenti must navigate from Si to Gi.

of such an experiment with 16 agents. Table 2 shows the
computation time for the WHCA* algorithm with a window
size of 5 compared with thePUSH AND SWAP technique.

The next experiment compares WHCA* with the
PUSH AND SWAP technique on a randomly populated grid-
world with 20% obstacle coverage. Agents with random and
mutually exclusive initial and target configurations are placed
in this environment. Figure 6 shows an example of this ex-
periment with 100 agents.

Figure 7(a) shows the computation time needed to compute
a solution to the random placement problem with varying
numbers of agents. WHCA* was executed with two window
sizes, 8 and 16. ThePUSH AND SWAP technique has com-
putation times competitive with the WHCA* approach with
the window size of 8. However, the small window size for
coordination in the decoupled approach quickly degrades in
its ability to compute a solution. The probability of WHCA*
(8) to compute a solution decays rapidly after 40 agents in the
environment. WHCA* with window size 16 is able to solve
much larger numbers of agents in the same environment, but
suffers from the same decay as the smaller window, just at
a larger number of agents. Fig 7(b) shows the percentage of
experiments for which the methods were able to compute a
solution. Note that thePUSH AND SWAP technique has 100%
success, regardless of the number of agents, with computation
times well under 10 seconds for 100 agents.

The final scalability experiment focuses on tightly coupled
problems requiring a high degree of coordination between
agents. Such problems are not usually solvable by tradi-
tional decoupled techniques and require a more centralized
approach. These experiments take the Loop-Chain bench-

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

T
ot

al
 S

ol
ut

io
n

Le
ng

th

Number of Agents

Push and Swap
WHCA*(8)

WHCA*(16)

Figure 8: The average total solution length computed by
the WHCA andPUSH AND SWAP approaches in the random
placement problems. Values are averages of 20 runs.

mark problem and resize the loop so that more agents can be
placed inside. For these benchmarks there is a high degree of
coupling between all agents, and all agents will have to make
individually suboptimal choices in order to solve the global
problem. Figure 7(c) shows the computation time of the
PUSH AND SWAP approach as increasing number of agents
are solved in this type of problem. From the figure, it can
be seen that the computation time for even 100 agents in this
particularly difficult instance remains tractable. The WHCA*
approach is unable to solve even the smallest version of this
problem, shown in Fig. 4 (Loop-Chain).

Solution Quality: Although there are no solution quality
guarantees when usingPUSH AND SWAP, a direct applica-
tion of the algorithm in all of the experiments provided qual-
ities that were competitive in the smaller benchmark prob-
lems, and noticeably better in the random placement prob-
lems when compared to WHCA*. Tables 1 and 2 show that
in the benchmark and single rotation problems, the total so-
lution length computed by both methods were similar. Quan-
tifiable improvements are seen in the random grid environ-
ment.PUSH AND SWAP is able to compute solutions roughly
20% shorter than WHCA* in both window sizes. Figure
8 shows the average solution length computed for each ap-
proach. Generally, solution quality forPUSH AND SWAP is
dependent on the number of swaps that must be performed in
order to solve the problem. In problems wherePUSH can be
liberally employed, like a random grid, the solution quality
will be significantly better than highly constrained problems,
like the Loop/Chain benchmark, where many swaps are per-
formed in order to compute the solution.

0

10

20

30

40

50

60

70

0 20 40 60 80 100

C
om

pu
ta

tio
n

T
im

e
(s

)

Number of Agents

Push and Swap
WHCA*(8)

WHCA*(16)

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 S
uc

ce
ss

Number of Agents

Push and Swap
WHCA*(8)

WHCA*(16)
0

50

100

150

200

0 20 40 60 80 100

C
om

pu
ta

tio
n

T
im

e
(s

)

Number of Agents

Push and Swap

Figure 7: (left) The computation time for varying numbers ofagents placed randomly in an environment. All values are an
average of 20 runs. (middle) The success rate for WHCA andPUSH AND SWAP in the random experiments. All values are an
average of 20 runs. (right) The computation time for thePUSH AND SWAP algorithm as the Loop-Chain example grows.

5 Discussion
This paper presented a computationally efficient and com-
plete approach for solving instances of cooperative path-
finding for problems with at least two empty vertices in the
graph. Through the combination of two basic primitives, the
algorithm can solve a broad set of problems as fast as a well
established decoupled planner, without any dependence on
parameter selection. Unlike decoupled approaches, the pro-
posedPUSH AND SWAP algorithm is able to solve instances
where the agents are fully coupled, as well as problems where
agents may need to repeatedly move away from their goal po-
sition in order to solve the global problem.

The proposed algorithm can potentially be extended to
solve problems where there is only a single empty node as
long as there are redundant loops in the graph (e.g., the case
of the 15-puzzle problem). This requires an extension to the
swap primitive to take advantage of cycles in the roadmap in
order to maintain the invariant for all agents not swapping.

ThePUSH AND SWAP approach computes a sequential so-
lution and does not aim to provide path quality guarantees.
Nevertheless, the agents that are pushed are always moving
along the shortest paths to their goals. Some redundancy in
motion is introduced by consecutive calls to theSWAP func-
tion. This redundancy can potentially be avoided by a more
complex version of this function. In general, sequential solu-
tions can be smoothed and parallelized during a post process-
ing step, which is an interesting direction to investigate.It
must be emphasized that there are competing notions of path
optimality for cooperative path finding, such as the sum of the
path costs for all agents or notions related to Pareto optimal-
ity, which can be used to evaluate the quality of a solution.

References
[Bennewitzet al., 2002] M. Bennewitz, W. Burgard, and

S. Thrun. Finding and optimizing solvable priority
schemes for decoupled path planning for mobile robots.
Robotics and Autonomous Systems, 41(2):89–99, 2002.

[Erdmann and Lozano-Perez, 1986] M. Erdmann and
T. Lozano-Perez. On multiple moving objects. InIEEE
Intern. Conference on Robotics and Automation (ICRA),
pages 1419–1424, 1986.

[Peasgoodet al., 2008] M. Peasgood, C. Clark, and
J. McPhee. A complete and scalable strategy for co-
ordinating multiple robots within roadmaps. IEEE
Transactions on Robotics, 24(2):282–292, 2008.

[Qutubet al., 1997] S. Qutub, R. Alami, and F. Ingrand.
How to solve deadlock situations within the plan-merging
paradigm for multi-robot cooperation. InProc. of the Inter.
Conf. on Intelligent Robots and Systems (IROS), volume 3,
pages 1610–1615, 1997.

[Ryan, 2007] M. R. K. Ryan. Graph decomposition for ef-
ficient multi-robot path planning. InInternational Joint
Conference on Artificial Intelligence (IJCAI), pages 2003–
2008, 2007.

[Silver, 2005] David Silver. Cooperative pathfinding. InThe
1st Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE’05), pages 23–28, 2005.

[Sturtevant and Buro, 2006] N. Sturtevant and M. Buro. Im-
proving collaborative pathfinding using map abstraction.
In The Second Artificial Intelligence for Interactive Dig-
ital Entertainment Conference (AIIDE’06), pages 80–85,
2006.

[Surynek, 2009] Pavel Surynek. Making solutions of multi-
robot path planning problems shorter using weak transpo-
sitions and critical path parallelism. InInternational Sym-
posium on Combinatorial Search, 2009.

[van den Berget al., 2009] J. van den Berg, J. Snoeyink,
M. Lin, and D. Manocha. Centralized path planning for
multiple robots: Optimal decoupling into sequential plans.
In Robotics: Science and Systems V, 2009.

[Wang and Botea, 2008] K.-H. C. Wang and A. Botea. Fast
and Memory-Efficient Multi-Agent Pathfinding. InInter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), pages 380–387, Sydney, Australia, 2008.

[Wang and Botea, 2009] K.-H. C. Wang and A. Botea.
Tractable Multi-Agent Path Planning on Grid Maps. In
Proceedings of the International Joint Conference on Arti-
ficial Intelligence IJCAI-09, pages 1870–1875, Pasadena,
CA, USA, 2009.

