1

Published in the Proc. of Int’l. Joint Conference on Artificial Intelligence, 2011, pp. 294-300

Push and Swap:
Fast Cooper ative Path-Finding with Completeness Guar antees

Ryan Luna and KostasE. Bekris*
University of Nevada, Reno
{rl'una, bekris}@se. unr.edu

Abstract

Cooperative path-finding can be abstracted as com-
puting non-colliding paths for multiple agents be-
tween their start and goal locations on a graph.
This paper proposes a fast algorithm that can pro-
vide completeness guarantees for a general class
of problems without any assumptions about the
graph’s topology. Specifically, the approach can
address any solvable instance where there are at
mostn-2 agents in a graph of size The algorithm
employs two primitives: a “push” operation where
agents move towards their goals up to the point that
no progress can be made, and a “swap” operation
that allows two agents to swap positions without
altering the configuration of other agents. Simu-
lated experiments are provided on hard instances
of cooperative path-finding, including comparisons
against alternative methods. The results are favor-
able for the proposed algorithm and show that the
technique scales to problems that require high lev-
els of coordination, involving hundreds of agents.

I ntroduction

00 o

(@) (b)

Yo ee-

Figure 1: lllustration of the swap primitive. Agents 1 and 2
are to swap positions with one another.

In prioritized schemes, paths are computed sequentially
and high-priority agents are considered moving obstacles
by low-priority ones[Erdmann and Lozano-Perez, 1986
Searching the space of prioritizations can assist in perfor
mance[Bennewitzet al, 2004. Such decoupled planners
tend to prune states in which higher priority agents allow
lower priority agents to progress, which may eliminate the
only viable solutions. Modern decoupled approaches con-
sider dynamic prioritization and windowed searSilver,

Cooperative path-finding requires the computation of path$005, as well as spatial abstraction for improved multi-agent
for multiple agents on a graph, where the agents must movgeyristic computatiofiSturtevant and Buro, 2006Another

from their unique start nodes to their unique targets whilemodern search-based technique creates a flow network in a
avoiding collisions. This problem is relevant to many apgli

tions, such as warehouse management, intelligent trat@spor the amount of replanninivVang and Botea, 2008

tion, mining, space exploration, as well as computer games.

1.1 Background

The problem can be solved with a coupled approach, whic

plans for the composite gragfi* = GxG x...xG, whereG

is the original graph and is the number of agents, or through

ally and then conflicts are resolved. Integrated with comteple

grid-world to significantly reduce the branching factor and

Certain methods aim to reduce the size of the search space
while maintaining completeness. A hybrid technique plans
for each agent given the future paths of other agents, but em-

loys a coupled approach for assigning targets and avoiding
deadlockgQutubet al, 1997. An alternative method manu-
ally decomposes a large graph into subgraphs of prespecified

¥Wpes[Ryan, 2007. Then it plans between subgraphs be-

fore coordinating motion within each subgraph. For graphs

search methods, such as A*, the coupled algorithm achieveg, specific topologies, efficient strategies to solve fault

completeness and optimality. Nevertheless, coupled pignn
becomes impractical due to the exponential dependeney on

and soon requires far too much time and memory.

“This work is supported by NSF CNS 0932423. Any opinions, 2009. A recent sequential approach computes the optimal
findings and conclusions expressed in this work are those of the alecoupling of large-scale problems into fully-coupled -sub
thors and do not necessarily reflect the views of the sponsors.

agent path planning problems exi&teasgooatt al, 2004,
[Surynek, 200R For specific domains in grid-worlds, there
is a complete polynomial time algorithfwang and Botea,

problemgvan den Berget al., 2009.



1.2 Contribution 2 Setup and Notation

This paper proposes a new method for cooperative patmonsideragrapg(v,g) andn agentsk, wheren < |V|—2.
finding that is computationally efficient and complete for a An assignmentd : [1,n] — V places all the agents in unique
very general class of problems, i.e., all instances whemeth vertices: Vi, j € [1,n],j # i : Ali] € V, Ali] # A[j].
are at most, — 2 agents in a graph with vertices. The starting assignment will be denoted&swhile the tar-

The proposed method is many orders of magnitude fasteget assignment will be denoted @s An action(A,, Ay)
compared against the traditional coupled A* approach, as iis a change between two assignmedtsand.A; so that only
focuses its search into a necessary subset of operatioes$ to @ne agent moves between neighboring nodes in the two as-
a solution. In comparison to existing alternatives thatpro signments, i.e3i € [1,n] andV¥j € [1,n],j #i:
vide completeness guarantees for certain problem suleslass ] ) ) ) ) )
the proposed method provides similar guarantees for a much Aali] # Abli], (Aali], Abi]) € €, Aals] = As[j]-
wider problem class. Furthermore, it does not make any asa pathIl = {A,, ..., A, } is a sequence of assignments, so
sumptions about the topology of the underlying graph, as ithat for any two consecutive assignmentsand.A; in IT
does not require the graph to be a grid, as other methodgere is an actiomr(A;, A;.1). The objective of cooperative
do [Wang and Botea, 2008[Wang and Botea, 20090r a  path-finding is to compute a palli = {S, ..., T}, which is
tree[Peasgoodt al, 2004. Compared to a general decou- g similar sequence initiated with and finishing with7".
pled algorithm devised to solve problems in a computation-
ally efficient mannefSilver, 2003, the proposed solution ex-
hibits competitive solution times while having no deperzen 8 ] Push and Swap )
on parameter selection. Most importantly, the proposed apl his section proposes a novel, complete algorithm for the co
proach solves a much wider set of problems than the incom@Perative path-finding problem.
plete, decoupled alternative. .

The approach employs two basic primitives. Note that eas;‘/?"1 Algorithm
instances, where there is no coupling between agents, can be
solved by each agent moving along its shortest path to itélgorithm 1 PUSHAND_SWAP( G, R,S,T )
goal. One of the two primitives of the proposed approach, 1: 4 «+ S
called “push”, is similar to this operation. An agent forces 2: T1* « {A}
other agents to clear its shortest path to its goal and movess: i/ « ()
along this path. Harder problems, however, will require at 4: for all » ¢ R do
least two agents to switch positions. This issue is adddesse 5: while A[r] # T[r] do

by the second primitive of the algorithm called “swap”. Once &: if PUSHIT*,G, A, T,r,U)==FALSE then
an agent cannot make progress towards its goal by pushingy: if swar(Il*,G, A, T,r,U)==FALSE then
then it has to swap positions with the agent nextto it aloeg th sg: return @ (i.e., Failure)

shortest path. This operation brings the two agents in a parto: 7/ «— ¢/ U Alr]

of the graph where the swap can take place. This may forceo: return IT* (i.e., Success)
other agents in the graph to move in response, potentidlly at
of them. Eventually, all the agents must be returned to thei
original positions, with the two agents swapping positidhs

it is not possible to execute the swap operation for these tw
agents, then the problem is not solvable.

Push And Swap: Algorithm 1 provides the high-level op-
ration of the approach. ThrRJSHAND_SWAP method sets
e current assignment to the starting ones (line 1) and

Experiments verify the promised advantages by comparind]'/at€s the solution pathi* by inserting the starting assign-
corhaaton i Sganet O coupe A e nent ne 2. Lotz e ol agors it Fave
tive, as well as the fast and general decoupled method fo? o (line 4 tries first § .hﬂt T
cooperative path-findingSilver, 2003. The comparison in- 298N (line 4), PUSHAND_SwAPries first to pushr to 7]
cludes small-scale, hard instances of cooperative patim§nd by c_Iearlng |ts_path from other agents (I|n_e (.3)'. .If the pgsh op
where the agents ére highly coupled and a significant nu eration forr fails, then a swap operation is initiated (line 7).
ber of swaps per agent has to be executed. The decoupr:g the swap also fails, the_n the problem is not solyable (line
approach cannot solve many of these problems and the A hpll;irwgh?)isnr?taf dagr\:\?adpItgpt:rrgt?;,ntshggntﬁg é\)lgo\;:/tm:]:feeps
solution is orders of magnitude slower than the proposed al?eacheg'[r] it is inserted to the séf of static a énts whose
gorithm. The experiments also include larger-scale irt&an ’ 9 '

where hundreds of agents are placed randomly. The A* ap22S'tion rr]nust lbe_ respeagied (rl:'nﬁ 9). Eventuallé/ Lhe ﬁlgmﬁ
proach on the composite graph cannot provide solutions fo etl#]rnst e SO(ljJtIOI’] pal V\;] Ich Is constructed by the calls
these problems within a reasonable amount of time. When th thepusHandswap algorithms.

decoupled approach works, it comes up with fast solutiohs buPush Operation: The PUSH algorithm first computes the

it cannot solve all of the problems. The “push-and-swap” al-shortest pathp* between the current assignmed-| of the
gorithm solves all the large-scale problems in a computatio input agent- and the target assignmefr| (line 1). The
ally efficient manner. The length of solutions is compegitiv method will keep iterating as long aas not moved t@ [r]

to the length of solutions by the decoupled appro&itver,  (line 3) and it can still make progress towarfig] without
2009 but the solution paths lend themselves to smoothing. any need for swapping (lines 12-13). If the graph vertices



Swap Operation: Overall, swap selects the agent adja-
cent to the input agentalongr’'s shortest path tg [r] (lines

(@) ol 1-2), and switches their positions leaving agents alreddy a
their target positions intact. For a vertexn G with degree

> 3, the algorithm computes the shortest path ftdm| to v
J: g (line 7). The algorithm then attempts to push agenésd s
to v and one of its neighboring nodes correspondingly (line
(c) (d)

9). This is achieved by a call to the functioruLTIPUSH,
which is analogous teusH The difference is that instead
Figure 2: lllustration of the push primitive. Agent 1 pusl2es of a single agentyuLTIPUSH moves a set of adjacent agents
twice in order to reach its target position. simultaneously. Furthermor&ULTIPUSH ignores the sef
and is able to indiscriminately push all agents out of thespe
ified pathp. If the pushing operation succeeds, thép] is
along p* are not occupied, then is moved along these equal tov and.A[s] is adjacent ta. In order forr ands to
vertices and the corresponding intermediate assignmeats aswap positions at, any two adjacent vertices of(excluding
stored on the solution path (lines 4-7). At this point; fias  the vertex occupied by) must be evacuated (line 10). This
already reached[r], the subproblem for is solved (line 8). is the objective of functioltLEAR. If two adjacent vertices
Otherwise, the next vertex along the shortest paftt of »  of v cannot be cleared, then it is not possible fand s to
is occupied by another agent. Then the algorithm considerexchange positions at and another vertex is considered.
whether it is possible to push those agents along the shortes If the set of all vertices of degree 3 on g is exhausted
path p* out of the way ofr, without altering the position andr ands cannot reach a vertex thenswaprreturns failure
of r or any of the agents it¥, which have already reached (line 13). If the swap can take place, the sequence of actions
their targets (lines 9-22pusHcomputes the shortest path  II computed ilMULTIPUSH andCLEAR is added to the global
between the agent occupying vertexand the closest empty solution (line 14), and the swap itself is performed (ling.15
verteXvempty 10 v 0N G, given thatA[r] and all vertices in A graphical example of the swap primitive is shown in Fig. 1.
U are obstacles (lines 9-11). If no patftan be found (lines
12-13), then agent cannot push the agents out of its Shortes‘Algorithm 3SWAR(IT, G, A, T, . U)
path and cannot make progress without swapping. If a path is——
found (lines 14-22), then all of the agents along the shortes 1! P* ¢~ SHORTESTPATH (G, A[r], T [r])
path are pushed one vertex forward towards,,, clearing : 5 < agent on first vertex ip” after A[r]
v for r to occupy. Then the algorithm continues the pushing 3 success = FALSE

2:
3:
process given the new assignment of the agents. 4: swap_vertices < {All vertices of degree> 3 ong}
5. while swap_vertices # () and success == FALSE do
6-

7

8

9

v = swap-vertices.POP()
p < SHORTESTPATH(G, A[r], v)

Algorithm 2 pusH IT*, G, A, T, r, U) I« 0

1: p* < SHORTESTPATH(G, A[r], T[r]) . if MuLTiPusH (I1, G, A, T, {r, s}, p) == TRUE THEN

2: v « first vertex inp* after A[r] 10: IF CLEAR(IT, G, v, A[r], A[s]) == TRUE THEN

3: while A[r] # Tr] do 11: success = TRUE

4. while3 v andv is empty ong do 12: if success == FALSE then

5 Alr]=wv 13:  return FALSE

6: I =1II* + {A} 14: II* = II* + 11

7: v < next vertex inp* 15: EXECUTE.SWAP (I1*, G, Alr], A[s])

8. if A[r] # T[r] then 16: II = II.REVERSE(), exchanging paths forands

9 Mark A[r] andi{ as blocked org; 17: 1" = 11" + 1T
10: Vempty ¢ ClOSest empty vertex toon G 18: if T[s] € U then
11: p ¢ SHORTESTPATH(G, v, Vempty) 19:  return RESOLVE(IT*,G, A, T, 5)
12: if p==0then 20: return TRUE
13: returnFALSE
14 Mark A[r] andl/ as free org Once the swap has been executed, the sequence of actions
15 v’ « last vertex orp beforeveypry IT computed during the1ULTIPUSH and CLEAR operations
16: U & Vempty must be reversed so that the agen® will be able to return
ir whilev” £vdo o to their targets at the end sfvaP. Note, that care has to be
18: r « agent for whichA[r] = v taken because ands have swapped positions. Therefore, in
19: AB’ ) -7 order to successfully reverse the sequence of actionss path
;2: H,, = 1_,1 +{A} executed by will now need to be executed in reverse 4y

. v =7

: , i and vice versa (line 16). The reversed sequence of actions is
22: v’ — previous vertex along then added to the solution paitt (line 17).
23: returnTRUE Finally, it may happen that the agentwas in the set/




and was already at its target position (line 18). In this cas8.2 Completeness
the assignment of must be adjusted so thal{s| is equal to
T|s]. This is achieved by functioresoLVvE (line 19). This
step is discussed later in this section.

Clear Operation: CLEAR attempts to free two vertices in the

neighborhood of a vertex that has degree three or more for

the purposes cdwAP. For brevity, a detailed algorithm is not
given, but the general procedure is described here.
Assume that two adjacent agentsand s wish to switch
positions, and currently occupy vertexand a neighbor of.
Two other vertices in the neighborhoodwmust be freed in

order forr ands to swap positions. There are three cases t

consider when evacuating a agentrom the neighborhood
of v, seen in Fig. 3. Case 1 involves simply pushintp a
neighboring vertex or one of its neighbors. If case 1 fails if and only if SwAPcan bring agents ands to a vertexy with
to free two vertices, but there exists one free vertex in thea degree> 3 along with two empty vertices.
neighborhood ofy, case 2 can be employed. In caser2,
is pushed toward to freev temporarily so that: can move
throughw to its unoccupied neighbar. Oncea is atv’, it
can attempt another push away frerm an effort to clear the

neighborhood.

Casel Case2,

\
(u%%y) \

Case 2

Figure 3: The three cases
considered when evacuat-
ing a from the neighbor-
hood ofv (shaded).

Case 3 is an extension of
case 2, where agent at-
tempts to evacuate the neigh-
borhood ofv through the ver-
tices occupied by agents
ands. This case is unneces-
sary to consider when check-
ing if a swAP is feasible be-
tweenr ands atv because it
requiresa to swap withr and
s. If it is possible to swafm
with r ands at v, then there
must be two other free ver-

tices in the neighborhood ef and it isn't necessary to evac-
uatea. Therefore, fow to swap withr ands, a second swap-
ping vertex,v must be employed. However, if it is possible
for a to swap withr ands ato, thenr ands could also swap at
0. Similarly, it may be possible fat to swap withr atv, and
then swap withs at 0. If it is feasible fora ands can swap at
0, it is also possible for ands to swap at). BecauseswApP
searches all possible vertices of degree 3 or mongill be
checked, making case 3 unnecessary to consider.

Resolve Operation: WhenRESOLVEIs invoked, an agent

is swapped with an agestbuts was already at its goal (e.g.,

Als] € U). There are a few cases to consider in order to gebf 5 vertexv are attempted. Therefore, if the set of vertices
agents back to its target, while allowing to make progress:

1) UsepusHto mover further along its path, freeing its cur- exhausted, andLeAR fails for each vertex, then it is not pos-
rent vertex, the target of Agents can push to its target.
2) If a pusHfails for r it needs to be swapped a second timegperative path-finding instance unsolvable.
with the agent blocking its shortest path. If teevaP suc-
ceeds, then theusHfrom case 1 is repeated. If this fails,
is swapped again, repeating case 2.

It can happen that swaps all the way to its target. In this
casey has swapped with a targétthat was occupying its tar-
get, and~’ must then continue the resolution process in order PUSH, by construction, excludes vertices in thelgathen
to free the goal of. If any swap from case 2 fails, then the searching for positions to push agents blocking a particula
resolution process is not possible, making the origgwahp

that invokedrRESOLVEinvalid.

Theorem 3.1. PUSHAND_SWAPis complete for cooperative
path-finding problems where the number of agenis less
than or equal t¢V| — 2.

The following discussion provides a sketch of the proof due t
space limitations. This sketch brings together three itheats
are necessary to provide completeness in this formulatipn:
If swaP fails, then the problem is not solvable, 2) Once an
agent has reached its target)sH and SwAP always ensure
this agent remains there, and 3) If the initial configurai®n

0solvable, there always exists a path for an agent to reach its

target, regardless of where it is pushed.
Lemma 3.2. A cooperative path-finding problem is solvable

Consider the sequence of vertices along the shortest path
of r to its targetT [r], wheres is positioned between and
T1r]. The ordering of- ands along this string of vertices has
to be swapped in order for the problem to be solved. Even if
r follows a different path to reach its tardgfr], the ordering
of r ands along the shortest path will change if the problem
is solvable. Thus, the problem is solvable if and only if the
two agents can be swapped.

SWAP exhaustively searches all the vertices of degree 3 or
more, checking whether it is feasible for adjacent agents
and s to reach a vertex usingULTIPUSH, apply CLEAR at
the vertex, and execute a swap.

There are two cases to consider when using.TIPUSH
to navigate a composite ageAtcomposed of- and s to v:
the initial position of theA lies in a cycle of the graph with
v, or no such cycle exists. In the case of the cycle, assum-
ing that at least one vertex in the cycle is free, agéntan
simply traverse the cycle to arrive étMULTIPUSH does not
exclude vertices itf. If A does not lie in a cycle with, then
the feasibility becomes a “packing” problem. If the number
of agents that lie along the shortest path foto reachv is
less than or equal to the number of reachable free vertices fo
those agents, then the “packing” problem will succeedyallo
ing A to reachv. Reachable, in this instance, is defined as all
vertices that can be occupied without moving through a ver-
tex in the path of4. If this problem is not solvable, then it is
not possible forA to reachw.

From the construction ofLEAR, given in the algorithm
description, all relevant possibilities to free the neigtitood

of degree 3 or more, reachable by the composite ageist

sible to swap the positions of agemtainds, making the co-

Lemma 3.3. After the application of one iteration ¢fusH
and SWAP primitives, at least one agent has made progress
toward its target, and agents at their targets will remagneth

path. If a vertex in the path teusH along exists i/, the
method returns a failure, indicatingsavApP is necessary.



SwWAP does not exclude any vertices@nwhen attempting CoupledA* | WHCA*(5) | Push and Swap
to switch the positions of two adjacent agents. When applying _Problem| Time | Size | Time | Size | Time | Size
MULTIPUSH andCLEAR in attempting to bring the two agents Tree| 2.80 | 15 | 0.68 | 34.4| 0.86 | 39
to a vertex where a swap can take place, potentially all other Corners| 3882 | 36 | 0.53 | 36 | 1.30 | 60
agents already at their target could be disturbed durirg thi Tunnel | 417 | 53 | oo nfa | 1.36 | 145

process. Therefore, all actions executed durmngTIPUSH String | 207 | 20 | 1.04 | 36.1| 0.77 | 39
andCLEAR are reversed after the swap is executed (line 16), Loop/Chn | co nfa | oo nfa | 2.99 | 523
bringing all agents that were at their target back to them. Connector| oo nfa | oo n/a | 3.57 | 108

When an agent makes progress along its path usimngsH
itisn’'t disturbing any other agents already at their tasgabd ~ Table 1: The computation time (ms) and solution length for
progress is made in computing the solution. However,igf  the benchmarksxo represents a failure to compute a solution.
blocked, therrusHmakes no progress in advancingAgent
a must swap positions with the blocking agent to continue to-
ward its target. By construction afwAP any agents already
at their targets that must be moved to accommodate the swap
will be returned there during the action reversal. At the eihd
SWAP, a has swapped positions along its shortest path, mak-
ing progress toward its target.

Lemma 3.4. If the initial agent configuration is solvable, any
configuration reached usirmgusHand swWAP operations will

remain solvable. o Figure 5: Left: The “stacks” benchmark problem with 16
An agenta’ may be pushed away from its initial vertex agents. Left: Rotation problem with 16 agents. All agents

during the planning of other agents. Because of this displac must move one vertex counterclockwise in the loop.

ment, it may seem that there is no path déoito travel from

its current vertex to its target. Note, however, that it ispo | i

sible fora’ to get from its initial vertex to the current vertex this is also reported as a failure. As expected, the coupled
using a series oPUSH and SWAP operations, and a similar @pproach is able to compute solutions for the smaller prob-
set of operations will allow:’ to return to its initial vertex. lems, butquickly grows infeasible as the number of agents ex
In the worst casey’ will have to return to its initial vertex, ceeds just a handful. The WHCA* planner is able to quickly
then follow the original path to its target. Lemma 3.3 showscompute solutions for 3 of the 6 benchmarks; the 3 failures
that an iteration of both theusH and Swap operators will ~ can be attributed to a high degree of coordination needed to
allow an agent to make progress in a solvable instance. [$olve those particular problems?USHAND_SWAP is able

the initial configuration is solvable, then it is possible 6 to quickly compute solutions to all six benchmark problems,
to reach its target. The solvability of an instance depend§upporting the completeness property given in Section 3.
only on the initial configuration, because any configuration One larger benchmark asks for multiple “stacks” of agents

achieved througRUSHAND _SWAP can be reversed. to reverse their position in each stack. The 16-agentsorersi
of the problem in Fig. 5 (a) is infeasible for the coupled A*
4 Evaluation planner. It also proved difficult for the decoupled WHCA*

, . approach, which was consistently unsuccessful in comgutin
This section evaluates the performanc®0EHAND_SWAP, 5 golytion with various window size®.USHAND_SWAP, on

and provides a comparison with the coupled A* and the detne other hand, computed a solution in just 5.7 mS.

coupled WHCA* algorithm[Silver, 2003 in terms of scal- Scalability: As the number of agents increases, the fail-

ability and robustness. In order to evaluate the proposege rate of traditional decoupled techniques increaseslyap

approach, a series of challenging instances of cooperatigacayse the level of coordination required grows larger.

pathfinding were created. These problems include a set of Tpe first scalability experiment tests an environment with

small benchmarks that tend to .be d|ﬁ|cuIF for a decoupledpe agents arranged in a circular pattern, with the inteafor

planner, as well as much larger instances in a randomly gefe environment free. The target for each agent is adjacent t

erated maze environment. All experiments were performeghe initial position, with the final result achieving a ratat

on a Core 2 Duo 2.5GHz machine with 4GB of memory. ot 4)| agents by one vertex. Figure 5(b) shows an example
Benchmark problems. A series of small, benchmark

problems (Fig 4) were created, ranging in size from 3 to 7

agents. Because of the small-scale of these problems, a com- ~ WHCA*(5) _Push and Swap
parison of theeUSH AND_SWAP technique with a complete, _# Agents| Time (ms) | Length | Time (ms) | Length
coupled A* planner can be shown. Results are also provided 121 2.13 179 | 1.136 3.00
for the decoupled WHCA* approach using a window size of 16 | 3.10 187 | 1.23 1.12
5. Table 1 shows the time needed for the three approaches to 20 | 5.06 201 219 2.50
compute their respective solutions. Note that times of more 24 | 9.59 1.93 | 2.56 2.08

than 60 minutes are declared a failure for the coupled A* . . -
approach. If the WHCA* gets stuck to a local minimum Table 2: The computation time (milliseconds) and average
" individual solution length for the rotation problem.



rEes®

Figure 4: The set of benchmark tests. From left: Tree, Csfil@mnel, String, Loop-Chain, Connector.

3000

Push and Swap ——"
WHCA¥(8) - )
WHCA(16) - e

2500

2000

1500

'S 23|

G 53| IS 22| 1G22
'S 92/G 12|

'S as|

1000

Total Solution Length

s37|  [s75

s77lGes| |Ga2| |Gos[s 38 9/G 955 58/G 81 500
'S 61 G5
G 26| IG96S 81|S 20|G 73| G 67|S 32S 48|
s 30 G91/G57] G g 0 y - - y
0 20 40 60 80 100
G 37| S 93(S 76| G 23| S 82|S 52|
s 10) Gso| [sseecn] [sedes foet G4 Number of Agents

Figure 8: The average total solution length computed by
the WHCA andPUSHAND _SWAP approaches in the random
placement problems. Values are averages of 20 runs.

Figure 6: A randomly generated environment with 100
agents. Agent must navigate from &o Gi.

of such an experiment with 16 agents. Table 2 shows th(ranark roblem and resize the loop so that more agents can be
computation time for the WHCA* algorithm with a window P P 9

26 1S Compared wih Ut LD SWAPecimique. _ PIacet e Forhise benchmar here . g degree o
The next experiment compares WHCA* with the pling g ' g

techni doml lated arid individually suboptimal choices in order to solve the glbba
PUSIELA’?',{RZS(\)’X/AP be(; nllque ona rarL omty p?{ﬁu a% 9na- mroplem. Figure 7(c) shows the computation time of the
world wi 0 Obstacie coverage. Agents with random ant, ;s anp_swap approach as increasing number of agents
mutually exclusive initial and target configurations arageld

in thi . t Fi 6 sh le of thi are solved in this type of problem. From the figure, it can
In this environment. Figure 6 Shows an example ot thisS €Xy,q gean that the computation time for even 100 agents in this
periment with 100 agents.

. L particularly difficult instance remains tractable. The WHCA
Figure 7(a) shows the computation time needed to computgsroach is unable to solve even the smallest version of this
a solution to the random placement problem with varyindproplem, shown in Fig. 4 (Loop-Chain).

numbers of agents. WHCA* was executed with two window
sizes, 8 and 16. TheUSHAND_SWAP technique has com- Solution Quality: Although there are no solution quality
putation times competitive with the WHCA* approach with guarantees when usirgusSHAND_SWAP, a direct applica-
the window size of 8. However, the small window size for tion of the algorithm in all of the experiments provided gual
coordination in the decoupled approach quickly degrades ifties that were competitive in the smaller benchmark prob-
its ability to compute a solution. The probability of WHCA* |ems, and noticeably better in the random placement prob-
(8) to compute a solution decays rapidly after 40 agentsdn thjems when compared to WHCA*, Tables 1 and 2 show that
environment. WHCA* with window size 16 is able to solve in the benchmark and single rotation problems, the total so-
much larger numbers of agents in the same environment, bliition length computed by both methods were similar. Quan-
suffers from the same decay as the smaller window, just aifiable improvements are seen in the random grid environ-
a larger number of agents. Fig 7(b) shows the percentage @fient.PUSHAND_SWAPis able to compute solutions roughly
experiments for which the methods were able to compute 20% shorter than WHCA* in both window sizes. Figure
solution. Note that theusHAND_swAPtechnique has 100% 8 shows the average solution length computed for each ap-
success, regardless of the number of agents, with compuitati proach. Generally, solution quality ferUSHAND _SWAP is
times well under 10 seconds for 100 agents. dependent on the number of swaps that must be performed in
The final scalability experiment focuses on tightly coupledorder to solve the problem. In problems wheresH can be
problems requiring a high degree of coordination betweeriberally employed, like a random grid, the solution qualit
agents. Such problems are not usually solvable by tradiwill be significantly better than highly constrained prablg
tional decoupled techniques and require a more centralizelike the Loop/Chain benchmark, where many swaps are per-
approach. These experiments take the Loop-Chain bencliermed in order to compute the solution.



Push and Swap —+—
WHCA*(8) ~-o--
WHCAX(16) %

100

80

200

150

Push and Swap —+—

60
100

Computation Time (s)
%,
Percent Success
Computation Time (s)

40
50 |

Push and Swap ——
WHCA*(8) 0w P
. . WHCA'(16) | . D
0 20 40 60 80 100 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100
Number of Agents Number of Agents

Number of Agents

Figure 7: (left) The computation time for varying numbersagents placed randomly in an environment. All values are an
average of 20 runs. (middle) The success rate for WHCArrgH AND_SWAP in the random experiments. All values are an
average of 20 runs. (right) The computation time for plussH AND_SWAP algorithm as the Loop-Chain example grows.

5 Discussion [Peasgooet al, 200§ M. Peasgood, C. Clark, and

This paper presented a computationally efficient and com- J- McPhee. A complete and scalable strategy for co-
plete approach for solving instances of cooperative path- Ordinating multiple robots within roadmaps. IEEE
finding for problems with at least two empty vertices in the ~1ransactions on Robotic84(2):282-292, 2008.

graph. Through the combination of two basic primitives, the[Qutubet al, 1999 S. Qutub, R. Alami, and F. Ingrand.
algorithm can solve a broad set of problems as fast as a well How to solve deadlock situations within the plan-merging
established decoupled planner, without any dependence on paradigm for multi-robot cooperation. Rroc. of the Inter.
parameter selection. Unlike decoupled approaches, the pro Conf. on Intelligent Robots and Systems (IR®@&8ume 3,
posedPUSHAND_SWAP algorithm is able to solve instances  pages 1610-1615, 1997.

where the agents are fully coupled, as well as problems Wherﬁ?yan, 2007 M. R. K. Ryan. Graph decomposition for ef-
agents may need to repeatedly move away from their goal po- ficient multi-robot path planning. linternational Joint

sition in order to solve the global problem. . ; _
The proposed algorithm can potentially be extended to gggéerzegg? on Artificial Intelligence (IICApages 2003

solve problems where there is only a single empty node as . S ] o
long as there are redundant loops in the graph (e.g., the cabgilver, 2003 David Silver. Cooperative pathfinding. The
swap primitive to take advantage of cycles in the roadmap in Digital Entertainment (AlIDE'05) pages 23-28, 2005.
order to maintain the invariant for all agents not swapping. [Sturtevant and Buro, 2006N. Sturtevant and M. Buro. Im-
ThePUSHAND _SWAP approach computes a sequential so-  proving collaborative pathfinding using map abstraction.
lution and does not aim to provide path quality guarantees. |n The Second Artificial Intelligence for Interactive Dig-
Nevertheless, the agents that are pushed are always movingital Entertainment Conference (AlIDE’'0Ogpages 80-85,
along the shortest paths to their goals. Some redundancy in 2006.
motion is introduced by consecutive calls to th&ap func-
tion. This redundancy can potentially be avoided by a mor
ing step, which is an interesting direction to investigake. posium on L-ombinatorial Seare )
must be emphasized that there are competing notions of patan den Bergt al, 2009 J. van den Berg, J. Snoeyink,
optimality for cooperative path finding, such as the sumefth M. Lin, and D. Manocha. Centralized path planning for
path costs for all agents or notions related to Pareto optima multiple robots: Optimal decoupling into sequential plans
ity, which can be used to evaluate the quality of a solution. In Robotics: Science and Systems009.
[Wang and Botea, 2008K.-H. C. Wang and A. Botea. Fast
and Memory-Efficient Multi-Agent Pathfinding. limter-
[Bennewitzet al, 2004 M. Bennewitz, W. Burgard, and national Conference on Automated Planning and Schedul-
S. Thrun.  Finding and optimizing solvable priority ~ ing (ICAPS) pages 380-387, Sydney, Australia, 2008.
schemes for decoupled path planning for mobile robots[wang and Botea, 2009K.-H. C. Wang and A. Botea.
Robotics and Autonomous Syste#t2):89-99, 2002. Tractable Multi-Agent Path Planning on Grid Maps. In
[Erdmann and Lozano-Perez, 188d. Erdmann  and Proceedings of the International Joint Conference on Arti-
T. Lozano-Perez. On mu|t|p|e moving Objects_ |EEE ficial Intelligence IJCAI—OQpages 1870-1875, Pasadena,
Intern. Conference on Robotics and Automation (IGRA) CA, USA, 2009.
pages 1419-1424, 1986.

(j’;Surynek, 200Dp Pavel Surynek. Making solutions of multi-
robot path planning problems shorter using weak transpo-

References



