
Anytime Solution Optimization for
Sampling-Based Motion Planning

Ryan Luna, Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki

Abstract— Recent work in sampling-based motion planning
has yielded several different approaches for computing good
quality paths in high degree of freedom systems: path shortcut-
ting methods that attempt to shorten a single solution path by
connecting non-consecutive configurations, a path hybridization
technique that combines portions of two or more solutions to
form a shorter path, and asymptotically optimal algorithms that
converge to the shortest path over time. This paper presents
an extensible meta-algorithm that incorporates a traditional
sampling-based planning algorithm with offline path shorten-
ing techniques to form an anytime algorithm which exhibits
competitive solution lengths to the best known methods and
optimizers. A series of experiments involving rigid motion and
complex manipulation are performed as well as a comparison
with asymptotically optimal methods which show the efficacy of
the proposed scheme, particularly in high-dimensional spaces.

I. INTRODUCTION

The canonical motion planning problem involves comput-
ing a valid path for a robot to move from a given start to a
given goal state while respecting a set of physical constraints
[1]–[3]. This problem is motivated by an ever-growing number
of practical applications such as autonomous exploration,
search-and-rescue, robotic surgery, and warehouse manage-
ment just to name a few. As robots become more mobile,
articulated and dexterous, it is important to find not only a
feasible plan for the robot, but also one that optimizes one or
more criteria for a given high-level task. The quality metric
is problem-specific, and this paper will consider optimizing
path length. The method described, however, is applicable to
many different metrics like smoothness or obstacle clearance.

Traditional sampling-based motion planners have proven
very successful in quickly computing paths for high-
dimensional systems [4]–[9]. However, solutions from these
planners can be unnecessarily long due to the sampling
process and other heuristics used during the search. Conse-
quently, sampling-based solutions are rarely executed without
first applying some optimization. There are several existing
methods for quickly shortening a path. Post-processing
methods, including shortcutting [10] and the hybridization of
a set of paths [11] have been shown to be highly effective at
removing redundant motions from paths and forming a shorter
solution from a combination of input paths, respectively.
These techniques operate independently of the planner used

R. Luna, M. Moll, and L. E. Kavraki are with the Dept. of Computer
Science, Rice University, Houston, TX. {rluna, mmoll, kavraki}@rice.edu

I. A. Şucan is affiliated with Willow Garage, Inc., Menlo Park, CA.
isucan@willowgarage.com

This work is supported in part by NSF CCF 1018798, NSF DUE 0920721,
NSF IIS 0713623, and the US Army Research Office under grant W911NF-
09-1-0383. Computing resources supported in part by Cyberinfrastructure
for Computational Research funded by NSF under Grant CNS 0821727.

Fig. 1: An optimized solution path composed of two hy-
bridized input paths with local shortcutting applied.

to compute the solution and can be applied as an optional
step after planning. A new class of sampling-based motion
planning algorithms has also been developed [12], which are
proven asymptotically optimal. These methods converge to
the optimal solution path with probability one as the number
of samples used during planning goes to infinity.

This paper addresses two questions when using sampling-
based planners under time constraints: given a time budget for
planning, how effective are existing post-processing methods
for solution optimization across a broad spectrum of problems,
and are these techniques able to compete with paths computed
by algorithms which return the optimal solution given enough
time? A meta-algorithm that combines the strengths of short-
cutting and hybridization is presented in Section III, which
allows any traditional sampling-based algorithm to operate
with anytime properties. The meta-algorithm allows for the
solution path to be continually optimized until computation
is ceased. Experimental results show that the meta-algorithm
for anytime planning can significantly reduce the path length
for a given time budget across a broad spectrum of sampling-
based planners. Moreover, a comparison with asymptotically
optimal methods shows that the meta-algorithm is able to
find solutions of similar and possibly shorter length given
the same time constraints in high-dimensional spaces.

II. PREVIOUS WORK

Motion planning is a fundamental problem in robotics, and
has benefitted from many different perspectives in the research
community. There exist a wide variety of approaches to
solve this problem [1]–[3], but for high dimensional systems,
sampling-based planners are typically used.

A. Sampling-based Motion Planning

Sampling-based motion planners attempt to approximate
the free/valid portion of the state space through the use of
sampling. Samples can be connected via a valid path to form a
graph or tree structure from which a solution can be extracted.

Published in the Proc. of the IEEE Int’l Conf. on Robotics and Automation, 2013, pp. 5053-5059

The Probabilistic RoadMap method (PRM) [4] is the first
method to employ such a scheme. The PRM begins by
constructing a graph composed of valid samples which are
connected via valid paths through the use of a local planner.
Once the roadmap is computed, the start and goal states can
be inserted into the structure, and a graph search is used to
obtain a valid trajectory. Tree-based methods are also popular
(e.g., EST [5], RRT [6], [7], SBL [8], KPIECE [9]), where the
tree is rooted at the start state of the robot, and is grown
toward the goal. The search ceases when the goal is connected
to the tree. Tree-based algorithms are particularly useful for
dynamic environments or non-holonomic systems.

Although sampling-based motion planners are not com-
plete, these methods can provide probabilistic completeness,
indicating that if a solution exists for a particular planning
instance, the probability of discovering the solution converges
to one as the number of states sampled increases to infinity.

B. Improving Sampling-Based Paths

Although sampling-based methods are able to quickly solve
motion planning problems, the solutions returned by these
techniques are notoriously sub-optimal due to the discrete
set of states used to construct a solution path. A proof of
the sub-optimality for many popular sampling-based methods
is given in [12]. The sub-optimality of these methods has
lent itself not only to informed heuristics for sampling-based
planners, but also to path optimization techniques performed
as a post-processing step to planning as well as algorithms
that converge to the optimal solution.

a) Shortcutting: Shortcutting is a fast and intuitive post-
processing method to significantly reduce the length of a
solution path [10], [13]. This technique removes superfluous
motions by selecting two points along non-consecutive
segments from the path and attempting to connect these points
directly via a straight path. If the direct path is valid, the
original path segments connecting the two points are replaced.
A general form of shortcutting is shown in Algorithm 1.
This method has appeared in many variations throughout the
sampling-based motion planning literature [14]–[18].

Algorithm 1 Shortcut

Input: π: path; s: Number of shortcutting attempts
Output: A path with potentially shorter length

1: s′ ← 0
2: while s′ < s do
3: ãb← π.RandomSegment()
4: ab← straight path connecting endpoints of ãb
5: if |ab| < |ãb| and CheckMotion(ab) then
6: π.Substitute(ãb, ab)
7: s′ ← s′ + 1
8: return π

b) Hybridization: Hybridization is a technique for path
optimization that combines two or more solution paths in
order to form a new, hybrid path composed of the best portions
of the input paths [11]. This method creates a hybridization
graph of the input paths, where the vertices are the states
of the input paths, and edges indicate valid paths between

the states. This graph is initialized to the disjoint set of input
paths, and valid bridges between the input paths are computed
and inserted as additional edges into the graph. Once a set
of bridges have been discovered, a classical graph search
technique can be used to find a shorter, hybrid path from the
hybridization graph.

A straightforward all-pairs computation to find the set of
valid bridges has O(n2) complexity, and does not scale well
with long input paths or a large set of paths. Two heuristic
methods can be employed to improve the computation time
of the method. The first takes a local approach, and only
attempts to connect two paths at states that are within a
prescribed distance. This is useful for situations with a large
number of input paths. For scenarios where the number of
input paths is bounded, a linear time dynamic programming
algorithm exists to match two paths together, yielding an
encoding of the cost to bridge any two states in the set of
input paths which can be minimized.

c) Online Optimization: A wide variety of methods
exists that augment existing sampling-based algorithms in
order to bias the search to discover high quality paths during
the planning process itself. Methods that incorporate the
cost of the path into the tree expansion process [19], [20],
have shown to return high quality solutions. Identifying
homotopic classes within a particular environment is useful for
computing a near-optimal path using roadmap based methods
[21], [22], especially in environments with narrow passages.
Other heuristics known to work well include visibility regions
[23], reachability [24], [25], and random restarts [26]. Finally,
for systems with complex dynamics, CHOMP is shown to
continuously refine a potentially invalid input trajectory,
eventually converging to a valid trajectory in a local minimum
of the optimization space [27]. The above methods, among
others, are effective in finding superior solutions compared
to uninformed methods. Many of these methods, however,
require extensive knowledge of the state space and/or the
robotic system, or the pre-computation of expensive data
structures, and the computation of these heuristics may take
significantly more time than their uninformed counterparts.
Moreover, these methods do not guarantee convergence to
the optimal solution.

d) Asymptotically Optimal Methods: A class of
sampling-based algorithms has recently been developed that
converges to the true optimal solution as the number of
samples increases infinitely [12]. These methods, known as
asymptotically optimal sampling-based planners, opportunis-
tically improve a solution path by employing a sophisticated
heuristic to reconnect states in the roadmap/tree structure
based on information gained from a new sample. In particular,
RRT∗, an asymptotically optimal version of the canonical RRT
algorithm, has been shown to return significantly shorter paths
than RRT given a specified number of samples when planning.
Due to the potential for high density in roadmaps computed
by these planners over long time horizons, a set of methods
for near-optimal planning has been proposed [28], [29], which
capture a high-quality approximation of the free space while
significantly reducing the number of vertices in the graph.

(a) 2D Barriers environment (b) 3D Cubicles environment (c) 3D ‘Easy’ environment with 2 robots

Fig. 2: Free-flying rigid body environments. Barriers operates in SE(2), Cubicles in SE(3), and Easy has two robots in SE(3).

III. ANYTIME PATH SHORTENING

This section presents a meta-algorithm that is applicable
to any traditional sampling-based motion planning method,
and its use gives the underlying planner an anytime quality.
The shortest known solution will be continually improved
through the use of shortcutting and hybridization methods,
and can be retrieved at any time. Ideally, the planner used
will discover many solutions during the time allotted, and
by alternating between shortcutting and hybridization, it is
expected that the strengths of both methods will be gained and
a high quality solution will emerge. Although the technique
described explicitly optimizes path length, it is possible to
use a similar scheme to optimize over different criteria such
as smoothness or clearance. Note that a different optimization
criteria may require methods other than shortcutting or
hybridization for best results (i.e., [10], [27]).

When using sampling-based planning, there are a variety
of offline methods that can be used to compute a high-quality
solution. Shortcutting and hybridization have the distinct
advantage of being agnostic to the planner used to compute
the plan, the ability to operate in very short periods of
time, and can continually improve upon the quality of a
path with repeated application. Shortcutting a single path
segment requires just the verification of a short path using
a local planner. Construction of the hybridization graph can
be performed incrementally as new solutions are found, and
computing the hybrid bridges in this graph is also verification
of short paths using a local planner.

Algorithm 2 Anytime Path Shortening

Input: p: planner; b: time budget; m: # solutions to hybridize
Output: A shortened path, if at least one path was found

1: smooth = true
2: while time() < b do
3: if p.Plan() then
4: if smooth == true then
5: Shortcut(p.BestSolution())
6: else
7: Hybridize(m, p.Solutions())
8: smooth = not smooth
9: return p.BestSolution()

Shortcutting and hybridization also have distinct advantages
in how the path is shortened. Shortcutting allows for precise
refinement of a single solution by removing redundant
motions from relatively close states on the path. Hybridization,
on the other hand, forms an entirely new and shorter solution
path composed from the best segments of the input paths.
This technique is especially helpful in discovering solutions
that lie in a new homotopy class from the input paths.
Note that these improvements are complementary to one
another: shortcutting performs micro-level optimizations by
removing small, superfluous motions from the path, and
hybridization allows for macro-level improvements to a
solution path by composing a new path from large portions of
the existing paths. Shortcutting is unlikely to discover a new
homotopy, especially in environments with narrow passages,
and hybridization is not particularly suited for removing small
redundancies from an otherwise high-quality path segment.

The anytime path shortening method, detailed in Algo-
rithm 2, requires a planner, a specific time-budget, and a
cap for the maximum number of solutions to hybridize. This
cap is useful for large time budgets where many paths may
be computed and the hybridization method begins to take
significantly more time. In such a case, the best m (or random
m) solutions can be hybridized.

Anytime path shortening operates over a fixed time budget,
repeatedly computing solutions to the planning query (line 3).
After obtaining a new solution path, the algorithm applies
either shortcutting on the shortest known solution (line 5), or
creates a new hybrid path from the best m solutions found
(line 7). The choice of optimization technique alternates,
given by the boolean flag on line 8. Once the time budget is
exhausted (line 2), the shortest solution is returned (line 9).

The modularity of the anytime meta-algorithm allows for
flexibility in both the number and types of motion planners
used, as well as the optimization techniques used to refine the
solution. For general problem solving, a number of different
motion planners can executed in parallel and an integer
counter can be used to indicate the offline optimization
scheme employed by each planner once a path is found.
This broad approach is likely to capture the strength of a
particular planner in a problem while mitigating the effects
of another planner that is less effective for the same problem.

0 5 10 15 20 25
Time (seconds)

1000

1500

2000

2500

3000

M
ed

ia
n

P
at

h
Le

ng
th

Barriers

EST
EST Hybridize
EST Shortcut
EST Alternating

(a) Barriers: EST

0 5 10 15 20 25 30
Time (seconds)

2000

2500

3000

3500

4000

4500

5000

M
ed

ia
n

P
at

h
Le

ng
th

Cubicles

SBL
SBL Hybridize
SBL Shortcut
SBL Alternating

(b) Cubicles: SBL

0 2 4 6 8 10 12 14 16
Time (seconds)

500

1000

1500

2000

2500

M
ed

ia
n

P
at

h
Le

ng
th

Easy

RRT
RRT Hybridize
RRT Shortcut
RRT Alternating

(c) ‘Easy’: RRT

0 2 4 6 8 10 12 14 16
Time (seconds)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

M
ed

ia
n

P
at

h
Le

ng
th

Barriers

KPIECE
KPIECE Hybridize
KPIECE Shortcut
KPIECE Alternating

(d) Barriers: KPIECE

0 5 10 15 20 25 30
Time (seconds)

2000

2500

3000

3500
M

ed
ia

n
P

at
h

Le
ng

th

Cubicles

RRTConnect
RRTConnect Hybridize
RRTConnect Shortcut
RRTConnect Alternating

(e) Cubicles: RRT-Connect

0 2 4 6 8 10 12 14 16
Time (seconds)

600

800

1000

1200

1400

1600

1800

2000

2200

M
ed

ia
n

P
at

h
Le

ng
th

Easy

EST
EST Hybridize
EST Shortcut
EST Alternating

(f) ‘Easy’: EST

Fig. 3: Effects of anytime path shortening on a variety of planners in rigid body environments. The plot shows the median
solution length with the 1st and 3rd quartiles denoted by error bars. All values are taken over 50 runs.

IV. EXPERIMENTS

Simulated experiments presented in this section attempt to
answer the questions tendered in the introduction regarding
the efficacy of post-processing techniques when planning
under a specific time budget, and whether these techniques
can compete with algorithms that converge to the optimal
solution given the same time constraints.

Implementation Details: All experiments were implemented
using the Open Motion Planning Library [30], which provides
implementations for all planners and optimization techniques
used. In all experiments, each planner is given a specific
time budget for solving the query. The total number of
paths hybridized is capped at 24 due to the computational
complexity of the dynamic programming algorithm for
hybridization [11]. Shortcutting operates by selecting a pair of
close states in the solution path and attempting to join them
in the manner shown in Algorithm 1. For each call to the
shortcutting procedure, the number of shortcutting attempts is
capped by the total number of states in the path. To mitigate
validation of very long shortcuts, the maximum length of the
shortcut is capped at one-third of the total input path length;
any shortcut longer than this value is not validated, and a
new pair of states is selected for shortcutting.

A. Rigid Body Planning

The efficacy of anytime path shortening is first evaluated in
instances of free-flying rigid bodies in three environments (see
Figure 2), and then compared against newer asymptotically
optimal algorithms. The 2D “Barriers” and 3D “Cubicles”

environments have one robot, and the 3D “Easy” environment
contains two rigid bodies that must exchange states while
coordinating through a narrow passage. These experiments
were executed using a 2.4GHz Intel Xeon processor and 4GB
memory. Anytime path shortening is compared with no opti-
mization, as well as repeatedly applying only hybridization
or only shortcutting during the same time budget.

Figure 3 shows a representative sample of the benefits of
anytime path shortening for a range of runtimes across a
spectrum of sampling-based planners. These charts plot the
median solution length along with the 1st and 3rd quartiles
given a specific planning budget. It should be noted that the
values in these plots are not monotonically decreasing because
each data point is run independently of all others. From the
figures, it is clear that the proposed anytime optimization
technique tightly converges to a value at or below a similar
technique that applies just shortcutting or hybridization during
the same time period. In the 3-DOF “Barriers” world there
are many homotopic classes that will be discovered, and
anytime path shortening finds a solution on average that is
20% shorter than applying just shortcutting or hybridization.
The 6-DOF “Cubicles” world has fewer homotopic classes
that are likely to be discovered, and yet the anytime path
shortening method finds a solution that is around 10% shorter.
In the 12-DOF “Easy” world shortcutting and anytime path
shortening return nearly identical solutions in this space. This
can be explained by the relative sparseness of the world which
contains just two symmetric homotopy classes. Finally, notice
the very tight bounds on the path length with the anytime

0 5 10 15 20 25 30
Time (seconds)

600

800

1000

1200

1400

1600

1800

2000

2200

M
ed

ia
n

P
at

h
Le

ng
th

Barriers

RRT*
EST Alternating

(a) Barriers: EST

0 5 10 15 20 25 30
Time (seconds)

1800

1900

2000

2100

2200

2300

2400

2500

2600

M
ed

ia
n

P
at

h
Le

ng
th

Cubicles

RRT*
RRT Alternating

(b) Cubicles: RRT

0 5 10 15 20 25 30
Time (seconds)

550

600

650

700

750

800

850

M
ed

ia
n

P
at

h
Le

ng
th

Easy

RRT*
RRTConnect Alternating

(c) ‘Easy’: RRT-Connect

Fig. 4: Comparison of anytime path shortening and asymptotically optimal algorithms in rigid body planning. The plot shows
the median solution length with the 1st and 3rd quartiles denoted by error bars. All values are taken over 50 runs.

path shortening algorithm. This indicates that performance is
very repeatable.

Comparison with RRT*: It is interesting to compare the
anytime path shortening method to asymptotically optimal
planners which converge to the optimal solution as the
planning time goes to infinity. This comparison is performed
with the understanding that asymptotically optimal algorithms
are developed for a different purpose, and provide a theoretical
guarantee that has not been proven for the anytime path
shortening method. These experiments compare RRT∗ [12]
with the suite of planners seen in the worlds from Figure 2.

Figure 4 shows a representative snapshot for the perfor-
mance of RRT∗ with respect to three other sampling-based
methods using anytime path shortening. The plots chart the
median solution length along with the 1st and 3rd quartiles
given a specific planning budget. RRT∗ generally returned a
shorter solution in the “Barriers” and “Cubicles” worlds,
roughly 5% shorter in the limit. Surprisingly, in the 12-
DOF “Easy” world the scenario is reversed, and anytime
path shortening finds a solution which is consistently 5-10%
shorter than that from the asymptotically optimal planner.

B. Manipulator Planning

Anytime path shortening is also evaluated for instances
of manipulator planning. Planning queries for the 7-DOF
arm of a PR2 robot from Willow Garage are performed
using the ROS infrastructure and MoveIt! planning package
[31] in conjunction with OMPL [30]. Three scenes were
constructed; these can be seen in Figure 5. The first is an
empty environment with the exception of a post blocking
some motion of the right arm. The second scene is a table
environment where the motion of the right arm must be
planned around an obstacle on top of the table. The third scene
is a cluttered environment with many small obstacles within
range of the PR2’s arm. All experiments were performed on
a quad-core Intel Core 2 Duo 2.4 GHz with 4GB memory.

Similar to the rigid body experiments above, Figure 6(a)-(c)
shows the effects of anytime path shortening for a represen-
tative sample of planners. The plots show that shortcutting
dominates in the “Post” and “Table” scenes, which can be
explained by the relative sparseness of environment coupled
with just one homotopy class for the solution. In the “Clutter”

scene, pure hybridization achieves a solution length about
15% longer on average when compared to shortcutting or the
anytime path shortening method. The size of the obstacles in
this scene combined with the joint limits of the PR2 greatly
affects the ability for solutions of other homotopic classes
to be discovered. This explains why shortcutting and the
anytime path shortening method find very similar solutions
for all three of these scenes, and further investigation of the
effects of anytime path shortening is left as future work.

The manipulator planning scenes are also compared to the
RRT∗ planner which converges to the optimal solution given an
infinite time budget. Figure 6(d)-(f) plots the median solution
length returned by RRT∗ to a representative series of planners
using the anytime path shortening technique. Surprisingly,
RRT∗ finds solutions ranging from 20% longer in the “Clutter”
world to nearly 50% longer in the “Post” environment
when compared to traditional sampling-based methods using
anytime path shortening. Also, note the tight convergence
for the anytime path shortening method as the time budget
increases. Over a longer horizon, the solution returned by
anytime path shortening becomes more predictable.

In addition to solution length, it is noteworthy to point out
the rate at which the planners failed to find any solution at all
in these experiments, shown in Figure 7. The RRT∗ planner
exhibited a significant rate of failure in these experiments,
particularly in the “Post” and “Clutter” environments where
rates of 50% or higher were seen even at longest planning
budgets. On the other hand, traditional sampling-based
methods had very few failures, and those that were seen
occurred during the shortest time budgets.

V. DISCUSSION

This paper presented a meta-algorithm for converting
any sampling-based motion planner into one with anytime
properties that continually shortens the solution through a
combination of existing optimization techniques. The meta-
algorithm shows improvement over a wide spectrum of
sampling-based planners given a specific planning time. In
addition to improvements in path length, greater repeatability
is also observed. Moreover, in high-dimensional scenarios
the anytime technique exhibited significant improvements in

(a) Post (b) Table (c) Clutter

Fig. 5: Manipulator scenes for the 7-DOF arm of the PR2. The start pose is shown in green, and the goal pose is orange.

0 5 10 15 20
Time (seconds)

6

8

10

12

14

16

18

20

22

M
ed

ia
n

P
at

h
Le

ng
th

Post

SBL Hybridize
SBL Shortcut
SBL Alternating

(a) Post: SBL

0 5 10 15 20
Time (seconds)

5

10

15

20

25

30

35

40

45

M
ed

ia
n

P
at

h
Le

ng
th

Table

KPIECE Hybridize
KPIECE Shortcut
KPIECE Alternating

(b) Table: KPIECE

0 5 10 15 20
Time (seconds)

8

10

12

14

16

18

20

22

24

M
ed

ia
n

P
at

h
Le

ng
th

Clutter

RRTConnect Hybridize
RRTConnect Shortcut
RRTConnect Alternating

(c) Clutter: RRT-Connect

0 5 10 15 20
Time (seconds)

7

8

9

10

11

12

13

14

15

16

M
ed

ia
n

P
at

h
Le

ng
th

Post

RRT*
SBL Alternating

(d) Post: SBL

0 5 10 15 20
Time (seconds)

6

8

10

12

14

16

18

M
ed

ia
n

P
at

h
Le

ng
th

Table

RRT*
KPIECE Alternating

(e) Table: KPIECE

5 10 15 20
Time (seconds)

6

8

10

12

14

16

18

20

M
ed

ia
n

P
at

h
Le

ng
th

Clutter

RRT*
RRTConnect Alternating

(f) Clutter: RRT-Connect

Fig. 6: Effects of anytime path shortening and a comparison with asymptotically optimal algorithms in manipulator planning.
Plots show the median solution length with the 1st and 3rd quartiles denoted by error bars. All values are taken over 25 runs.

solution length against a planner which returns the optimal
solution given enough planning time.

This work is not meant to directly compare any two
sampling-based algorithms, and such a comparison is outside
the scope of this paper. Previous work has shown that one
particular planner may be better suited for a specific robot or
environment. Furthermore, many sampling-based algorithms
provide parameters and other metrics that can be fine tuned
for a particular planning context. However, an interesting
insight into the poor behavior of the asymptotically optimal
RRT∗ in high dimensional spaces may be attributed to the
well-known difficulty of defining a good distance metric in
complex spaces to take advantage of the Voronoi bias property
of RRT [32], [33]. The study presented in this work shows
that offline heuristic techniques for solution optimization can
outperform specialized planners which compute the globally
optimal path in certain scenarios.

It should also be noted that utilizing asymptotically optimal
planners inside the anytime path shortening framework is non-
trivial. The anytime framework relies on a planner’s ability to
quickly return paths while spending the remaining time budget
optimizing the output. Asymptotically optimal planners do not
necessarily halt once a path to the goal has been computed,
but rather continually optimize the solution until a set time
budget or number of states has been expanded.

There are several interesting avenues for further expansion
of the comparison to online and offline optimization of motion
plans. In particular, trajectories for non-holonomic systems
cannot be easily optimized using shortcutting or hybridization.
Techniques like CHOMP [27] attempt to smoothly deform an
invalid trajectory into one which is valid using a gradient
descent-like approach over a cost function, but generating
high-quality trajectories for non-holonomic systems is still
an active field of research.

0 5 10 15 20
Time (seconds)

0

20

40

60

80

100

Pe
rc

en
tF

ai
lu

re

Post

RRT*
SBL Alternating

(a) Post: SBL/RRT∗

0 5 10 15 20
Time (seconds)

0

20

40

60

80

100

Pe
rc

en
tF

ai
lu

re

Table

RRT*
KPIECE Alternating

(b) Table: KPIECE/RRT∗

5 10 15 20
Time (seconds)

0

20

40

60

80

100

Pe
rc

en
tF

ai
lu

re

Clutter

RRT*
RRTConnect Alternating

(c) Clutter: RRT-Connect/RRT∗

Fig. 7: The percentage of experiments that failed to find any solution to the given query within the given time budget. Values
are out of 25 possible attempts.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[2] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. E. Kavraki,
K. Lynch, and S. Thrun, Principles of Robot Motion: Theory, Algo-
rithms, and Implementation. MIT Press, June 2005.

[3] S. M. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[5] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expan-
sive configuration spaces,” Intl. J. of Computational Geometry and
Applications, vol. 9, no. 4/5, pp. 495–512, 1999.

[6] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Intl. J. of Robotics Research, vol. 17, no. 5, pp. 378–400, 2001.

[7] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE Intl. Conf. on Robotics and
Automation, April 2000, pp. 995–1001.

[8] G. Sánchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” in The Tenth
International Symposium on Robotics Research, 2001, pp. 403–417.

[9] I. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” IEEE Trans. on Robotics, vol. 28, no. 1, pp.
116–131, 2012.

[10] R. Geraerts and M. H. Overmars, “Creating high-quality paths for
motion planning,” Intl. J. of Robotics Research, vol. 26, no. 8, pp.
845–863, August 2007.

[11] B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better:
Improving path quality by a path-merging algorithm,” IEEE Trans. on
Robotics, vol. 27, no. 2, pp. 365–371, April 2011.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Intl. J. of Robotics Research, vol. 30, no. 7, pp.
846–894, June 2011.

[13] S. Berchtold and B. Glavina, “A scalable optimizer for automatically
generated manipulator motions,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Sept 1994, pp. 1796–1802.

[14] D. Hsu, J.-C. Latombe, and S. Sorkin, “Placing a robot manipulator
amid obstacles for optimized execution,” in IEEE International
Symposium on Assembly and Task, July 1999, pp. 280–285.

[15] C. Geem, T. Siméon, J.-P. Laumond, J.-L. Bouchet, and J.-F. Rit,
“Mobility analysis for feasibility studies in cad models of industrial
environments,” in IEEE Intl. Conf. on Robotics and Automation, May
1999, pp. 1770–1775.

[16] P. Isto, “Constructing probabilistic roadmaps with powerful local
planning and path optimization,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, Sept 2002, pp. 2323–2328.

[17] J. Kim, R. A. Pearce, and N. M. Amato, “Extracting optimal paths
from roadmaps for motion planning,” in IEEE Intl. Conf. on Robotics
and Automation, Sept 2003, pp. 2424–2429.

[18] D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in IEEE Intl. Conf. on Robotics and Automation,
April 2004, pp. 446–452.

[19] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT
growth,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
Oct 2003, pp. 1178–1183.

[20] D. Ferguson and A. Stentz, “Anytime RRTs,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2006, pp. 5369–5375.

[21] E. Schmitzberger, J. Bouchet, M. Dufaut, D. Wolf, and R. Husson,
“Capture of homotopy classes with probabilistic roadmap,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, Oct 2002, pp. 2317–2322.

[22] L. Jaillet and T. Siméon, “Path deformation roadmaps,” in Workshop
on the Algorithmic Foundations of Robotics, July 2006.

[23] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based proba-
bilistic roadmaps for motion planning,” Journal of Advanced Robotics,
vol. 14, no. 6, pp. 477–493, 2000.

[24] R. Geraerts and M. H. Overmars, “Creating high-quality roadmaps for
motion planning in virtual environments,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, 2006, pp. 4355–4361.

[25] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling
for planning under differential constraints,” in IEEE Intl. Conf. on
Robotics and Automation, 2009, pp. 2859–2865.

[26] N. A. Wedge and M. S. Branicky, “On heavy-tailed runtimes and restarts
in rapidly-exploring random trees,” in Twenty-Third AAAI Conference
on Artificial Intelligence, July 2008, pp. 127–133.

[27] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
IEEE Intl. Conf. on Robotics and Automation, May 2009.

[28] J. D. Marble and K. E. Bekris, “Towards small asymptotically near-
optimal roadmaps,” in IEEE Intl. Conf. on Robotics and Automation,
May 2012, pp. 2557–2562.

[29] A. Dobson, A. Krontiris, and K. E. Bekris, “Sparse roadmap spanners,”
in Workshop on the Algorithmic Foundations of Robotics, 2012.

[30] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, Dec. 2012, http://ompl.kavrakilab.org.

[31] S. Chitta, I. A. Şucan, and S. Cousins, “MoveIt! [ROS Topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[32] P. Cheng and S. M. LaValle, “Reducing metric sensitivity in randomized
trajectory design,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, vol. 1, 2001, pp. 43–48.

[33] Y. Li and K. E. Bekris, “Learning approximate cost-to-go metrics
to improve sampling-based motion planning,” in IEEE Intl. Conf. on
Robotics and Automation, May 2011, pp. 4196–4201.

